Whole-tumor histogram models based on quantitative maps from synthetic MRI for predicting axillary lymph node status in invasive ductal breast cancer

医学 乳腺癌 直方图 接收机工作特性 淋巴结 逻辑回归 乳房磁振造影 核医学 放射科 癌症 内科学 人工智能 乳腺摄影术 计算机科学 图像(数学)
作者
Fang Zeng,Zheting Yang,Xiaoxue Tang,Lin Lin,Hailong Lin,Yue Wu,Zongmeng Wang,Minyan Chen,Lili Chen,Lihong Chen,Pu‐Yeh Wu,Chuang Wang,Yunjing Xue
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111325-111325 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111325
摘要

Abstract

Purpose

To investigate the potential of using histogram analysis of synthetic MRI (SyMRI) images before and after contrast enhancement to predict axillary lymph node (ALN) status in patients with invasive ductal carcinoma (IDC).

Methods

From January 2022 to October 2022, a total of 212 patients with IDC underwent breast MRI examination including SyMRI. Standard T2 weight images, DCE-MRI and quantitative maps of SyMRI were obtained. 13 features of the entire tumor were extracted from these quantitative maps, standard T2 weight images and DCE-MRI. Statistical analyses, including Student's t-test, Mann-Whiney U test, logistic regression, and receiver operating characteristic (ROC) curves, were used to evaluate the data. The mean values of SyMRI quantitative parameters derived from the conventional 2D region of interest (ROI) were also evaluated.

Results

The combined model based on T1-Gd quantitative map (energy, minimum, and variance) and clinical features (age and multifocality) achieved the best diagnostic performance in the prediction of ALN between N0 (with non-metastatic ALN) and N+ group (metastatic ALN ≥ 1) with the AUC of 0.879. Among individual quantitative maps and standard sequence-derived models, the synthetic T1-Gd model showed the best performance for the prediction of ALN between N0 and N+ groups (AUC = 0.823). Synthetic T2_entropy and PD-Gd_energy were useful for distinguishing N1 group (metastatic ALN ≥ 1 and ≤ 3) from the N2-3 group (metastatic ALN > 3) with an AUC of 0.722.

Conclusions

Whole-tumor histogram features derived from quantitative parameters of SyMRI can serve as a complementary noninvasive method for preoperatively predicting ALN metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
刚刚
manstein完成签到,获得积分20
2秒前
传奇3应助33采纳,获得10
5秒前
HaidongZhang完成签到,获得积分10
6秒前
的卢小马完成签到 ,获得积分10
6秒前
所所应助阿茗采纳,获得10
7秒前
隋玉完成签到 ,获得积分10
7秒前
李爱国应助sad采纳,获得10
10秒前
桐桐应助羽毛笔采纳,获得10
11秒前
IsJvDue关注了科研通微信公众号
13秒前
linliqing完成签到,获得积分10
14秒前
leo0531完成签到 ,获得积分10
15秒前
16秒前
16秒前
Akim应助想想采纳,获得10
16秒前
18秒前
科研通AI6应助sad采纳,获得10
18秒前
19秒前
靓丽的绿海完成签到,获得积分10
19秒前
充电宝应助ymm采纳,获得10
19秒前
机灵的阁完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
20秒前
小青椒应助植琳瑶采纳,获得30
20秒前
21秒前
zzzzz发布了新的文献求助10
22秒前
23秒前
tt完成签到,获得积分10
24秒前
25秒前
JamesPei应助老大爷滴滴采纳,获得10
25秒前
26秒前
赵秀发布了新的文献求助30
26秒前
26秒前
26秒前
27秒前
小蘑菇应助sad采纳,获得10
28秒前
28秒前
凌L完成签到 ,获得积分10
29秒前
30秒前
如意枫叶发布了新的文献求助30
30秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457168
求助须知:如何正确求助?哪些是违规求助? 4563701
关于积分的说明 14290858
捐赠科研通 4488321
什么是DOI,文献DOI怎么找? 2458425
邀请新用户注册赠送积分活动 1448538
关于科研通互助平台的介绍 1424188