Whole-tumor histogram models based on quantitative maps from synthetic MRI for predicting axillary lymph node status in invasive ductal breast cancer

医学 乳腺癌 直方图 接收机工作特性 淋巴结 逻辑回归 乳房磁振造影 核医学 放射科 癌症 内科学 人工智能 乳腺摄影术 计算机科学 图像(数学)
作者
Fang Zeng,Zheting Yang,Xiaoxue Tang,Lin Lin,Hailong Lin,Yue Wu,Zongmeng Wang,Minyan Chen,Lili Chen,Lihong Chen,Pu‐Yeh Wu,Chuang Wang,Yunjing Xue
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111325-111325 被引量:2
标识
DOI:10.1016/j.ejrad.2024.111325
摘要

Abstract

Purpose

To investigate the potential of using histogram analysis of synthetic MRI (SyMRI) images before and after contrast enhancement to predict axillary lymph node (ALN) status in patients with invasive ductal carcinoma (IDC).

Methods

From January 2022 to October 2022, a total of 212 patients with IDC underwent breast MRI examination including SyMRI. Standard T2 weight images, DCE-MRI and quantitative maps of SyMRI were obtained. 13 features of the entire tumor were extracted from these quantitative maps, standard T2 weight images and DCE-MRI. Statistical analyses, including Student's t-test, Mann-Whiney U test, logistic regression, and receiver operating characteristic (ROC) curves, were used to evaluate the data. The mean values of SyMRI quantitative parameters derived from the conventional 2D region of interest (ROI) were also evaluated.

Results

The combined model based on T1-Gd quantitative map (energy, minimum, and variance) and clinical features (age and multifocality) achieved the best diagnostic performance in the prediction of ALN between N0 (with non-metastatic ALN) and N+ group (metastatic ALN ≥ 1) with the AUC of 0.879. Among individual quantitative maps and standard sequence-derived models, the synthetic T1-Gd model showed the best performance for the prediction of ALN between N0 and N+ groups (AUC = 0.823). Synthetic T2_entropy and PD-Gd_energy were useful for distinguishing N1 group (metastatic ALN ≥ 1 and ≤ 3) from the N2-3 group (metastatic ALN > 3) with an AUC of 0.722.

Conclusions

Whole-tumor histogram features derived from quantitative parameters of SyMRI can serve as a complementary noninvasive method for preoperatively predicting ALN metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
牛魔王发布了新的文献求助10
1秒前
1秒前
黄秋枫发布了新的文献求助10
2秒前
RC_Wang完成签到,获得积分0
2秒前
2秒前
123654完成签到 ,获得积分10
5秒前
111发布了新的文献求助10
6秒前
大气可燕完成签到,获得积分20
6秒前
6秒前
不想看文献完成签到,获得积分10
7秒前
8秒前
shenhang23发布了新的文献求助10
8秒前
大模型应助蓝天采纳,获得10
8秒前
乘风文月完成签到,获得积分10
9秒前
JQ发布了新的文献求助10
9秒前
嘿嘿发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
周小周发布了新的文献求助10
12秒前
orixero应助RC_Wang采纳,获得10
12秒前
orixero应助xixi采纳,获得10
12秒前
笑哦发布了新的文献求助10
13秒前
14秒前
sevenhill应助DomeDmom采纳,获得10
14秒前
aaa完成签到,获得积分10
18秒前
18秒前
jignjing发布了新的文献求助10
19秒前
Hello应助山渐青采纳,获得10
19秒前
海蓝云天应助Tal采纳,获得10
20秒前
21秒前
enoblin完成签到,获得积分10
21秒前
21秒前
清爽的大树完成签到,获得积分10
21秒前
所所应助JQ采纳,获得10
22秒前
23秒前
发呆小蜗完成签到,获得积分10
23秒前
蓝天发布了新的文献求助10
24秒前
Sherry完成签到,获得积分10
24秒前
25秒前
酷波er应助321采纳,获得30
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5535691
求助须知:如何正确求助?哪些是违规求助? 4623521
关于积分的说明 14587624
捐赠科研通 4563996
什么是DOI,文献DOI怎么找? 2501374
邀请新用户注册赠送积分活动 1480430
关于科研通互助平台的介绍 1451750