已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Art Image Inpainting with Style-guided Dual-branch Inpainting Network

修补 计算机科学 人工智能 对偶(语法数字) 计算机视觉 图像(数学) 风格(视觉艺术) 艺术 视觉艺术 文学类
作者
Quan Wang,Zichi Wang,Xinpeng Zhang,Guorui Feng
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8026-8037 被引量:2
标识
DOI:10.1109/tmm.2024.3374963
摘要

Traditionally, art images have to be restored by professionals for a very long time. It is also possible to maintain the artistic value of damaged art images by digitizing them and restoring them through computer-aided means. However, existing advanced image inpainting methods are mainly intended for natural images and are not suitable for art images. Thus, we propose a novel style-guided dual-branch inpainting network (SDI-Net) to address the above-mentioned issue. Specifically, our SDI-Net consists of a style reconstruction (SR) branch and a style inpainting (SI) branch, in which the SR branch provides intermediate supervision (style and content supervision) for the SI branch. The SI branch performs art image inpainting with a coarse-to-fine approach. At the coarse inpainting stage, the content and style of art image are separated and preliminarily inpainted under the supervision of SI branch. In addition, we propose a class style learning (CSL) module to inpaint the style feature guided by the style label, which can provide more effective brushstrokes from the same class of art images. The coarse inpainted results can be obtained by fusing the inpainted style feature with the inpainted content feature. At the fine inpainting stage, a style attention (SA) module is proposed in the decoder to further refine the coarse inpainted results. We employ the style loss, the content loss, the multi-class style adversarial loss, and the reconstruction loss to jointly train the proposed SDI-Net. A variety of experiments demonstrate the effectiveness of the proposed method, which allows the filled brushstrokes to appear as realistic as possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ghost完成签到 ,获得积分10
2秒前
铜锣湾小研仔应助泽灵采纳,获得10
2秒前
Vince发布了新的文献求助10
3秒前
6秒前
粒子耶完成签到,获得积分10
7秒前
kaka完成签到,获得积分0
8秒前
玉屏风完成签到,获得积分10
10秒前
幸福背包发布了新的文献求助10
12秒前
Cuisine完成签到 ,获得积分10
14秒前
牧谷完成签到 ,获得积分10
19秒前
落落完成签到 ,获得积分0
19秒前
奥黛丽悟空完成签到,获得积分10
20秒前
狂奔弟弟完成签到 ,获得积分10
22秒前
JamesPei应助欣喜凡之采纳,获得30
23秒前
肃肃其羽完成签到 ,获得积分10
24秒前
闪闪的梦柏完成签到 ,获得积分10
26秒前
泽灵完成签到,获得积分10
26秒前
28秒前
狂奔弟弟2完成签到 ,获得积分10
29秒前
超帅慕晴完成签到,获得积分10
32秒前
温暖的豌豆完成签到 ,获得积分10
34秒前
小情绪完成签到 ,获得积分10
36秒前
江城一霸完成签到,获得积分10
37秒前
明理的延恶完成签到 ,获得积分10
38秒前
FLY完成签到,获得积分10
39秒前
43秒前
46秒前
不与仙同完成签到 ,获得积分10
47秒前
ADCIST发布了新的文献求助10
48秒前
重景完成签到 ,获得积分10
48秒前
害羞的书芹完成签到,获得积分10
50秒前
Much完成签到 ,获得积分10
50秒前
55秒前
迷路的台灯完成签到 ,获得积分10
55秒前
56秒前
Yasong完成签到 ,获得积分10
56秒前
fhw完成签到 ,获得积分10
56秒前
59秒前
zhencheng发布了新的文献求助10
1分钟前
TIX完成签到 ,获得积分10
1分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845383
求助须知:如何正确求助?哪些是违规求助? 3387658
关于积分的说明 10550255
捐赠科研通 3108372
什么是DOI,文献DOI怎么找? 1712551
邀请新用户注册赠送积分活动 824474
科研通“疑难数据库(出版商)”最低求助积分说明 774824