Research on CBF-YOLO detection model for common soybean pests in complex environment

环境科学 人工智能 计算机科学
作者
Linqi Zhu,Xiaoming Li,Hongmin Sun,Yingpeng Han
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:216: 108515-108515 被引量:43
标识
DOI:10.1016/j.compag.2023.108515
摘要

The intensive cultivation of large soybean fields, combined with environmental factors such as light and shadow, challenges the accuracy of traditional manual and machine learning algorithms in identifying insect pests in these fields. In this study, a CBF-YOLO network was proposed for detecting common soybean pests in complex environments. The network was composed primarily of the CSE-ELAN, Bi-PAN, and FFE modules. The CSE-ELAN module enhanced feature extraction in both spatial and channel dimensions by incorporating the CSE feature enhancement structure into the ELAN structure of YOLOv7. The Bi-PAN module fused the features of three different scaled feature layers to provide more accurate pest detection features and localization information. The FFE module consisted of spatial and channel feature purification modules that refined the multi-scale fused features from Bi-PAN, further improving the expression ability of the fused features. Experimental results showed that the mAP of CBF-YOLO network reached 86.9% for detecting common soybean pests, with average precisions for detecting Caterpillar and Diabrotica speciosa pest-damaged leaves reaching 86.5% and 87.3%, respectively. Compared to the original model, the mAP of the CBF-YOLO network for detecting common soybean pests increased by 6.3%, significantly improving the model's detection performance. The CBF-YOLO network exhibited the highest mAP of 81.6% and performed well in detecting common soybean pests in actual complex environments, compared to deep learning networks like YOLOv5. This network provides a technical basis for detecting common soybean pests in challenging environments. The data and code used in this study can be accessed at https://github.com/2peacock/CBF-YOLO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qinjiehm完成签到,获得积分10
刚刚
一蓑烟雨任平生完成签到,获得积分10
1秒前
文艺月亮完成签到,获得积分10
1秒前
我爱学习完成签到,获得积分10
1秒前
完美天蓝完成签到 ,获得积分10
1秒前
鼓鼓发布了新的文献求助10
2秒前
zhenqiqin发布了新的文献求助10
2秒前
科研通AI2S应助黎乐荷采纳,获得10
2秒前
高高完成签到,获得积分10
2秒前
丘比特应助dagongren采纳,获得10
2秒前
3秒前
Jean_Zhao完成签到,获得积分10
3秒前
skj你考六级完成签到,获得积分10
3秒前
Canma完成签到 ,获得积分10
3秒前
123完成签到,获得积分10
3秒前
3秒前
乾坤完成签到,获得积分10
4秒前
ttkd11完成签到,获得积分10
4秒前
5秒前
少吃顿饭并不难完成签到 ,获得积分10
5秒前
脑洞疼应助皮水之采纳,获得10
6秒前
天色青青完成签到,获得积分10
6秒前
6秒前
佟鹭其完成签到 ,获得积分10
6秒前
夜话风陵杜完成签到 ,获得积分0
6秒前
梓榆完成签到 ,获得积分10
6秒前
栗子芸完成签到,获得积分10
6秒前
跳跃完成签到,获得积分10
7秒前
Crystal完成签到 ,获得积分10
7秒前
star应助Estelle采纳,获得10
7秒前
还没想好完成签到,获得积分10
7秒前
7秒前
8秒前
科研狼完成签到,获得积分10
8秒前
8秒前
大智若愚骨头完成签到,获得积分10
8秒前
安静的ky完成签到,获得积分10
8秒前
wu完成签到,获得积分10
8秒前
9秒前
man完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5516547
求助须知:如何正确求助?哪些是违规求助? 4609479
关于积分的说明 14515851
捐赠科研通 4546190
什么是DOI,文献DOI怎么找? 2491137
邀请新用户注册赠送积分活动 1472886
关于科研通互助平台的介绍 1444796