亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

mtADENet: A novel interpretable method integrating multiple types of network-based inference approaches for prediction of adverse drug events

计算机科学 推论 鉴定(生物学) 数据挖掘 机器学习 人工智能 药物发现 药品 生物信息学 医学 药理学 生物 植物
作者
Zhuohang Yu,Zengrui Wu,Moran Zhou,Long Chen,Weihua Li,Guixia Liu,Yun Tang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:168: 107831-107831 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107831
摘要

Identification of adverse drug events (ADEs) is crucial to reduce human health risks and accelerate drug safety assessment. ADEs are mainly caused by unintended interactions with primary or additional targets (off-targets). In this study, we proposed a novel interpretable method named mtADENet, which integrates multiple types of network-based inference approaches for ADE prediction. Different from phenotype-based methods, mtADENet introduced computational target profiles predicted by network-based methods to bridge the gap between chemical structures and ADEs, and hence can not only predict ADEs for drugs and novel compounds within or outside the drug-ADE association network, but also provide insights for the elucidation of molecular mechanisms of the ADEs caused by drugs. We constructed a series of network-based prediction models for 23 ADE categories. These models achieved high AUC values ranging from 0.865 to 0.942 in 10-fold cross validation. The best model further showed high performance on four external validation sets, which outperformed two previous network-based methods. To show the practical value of mtADENet, we performed case studies on developmental neurotoxicity and cardio-oncology, and over 50 % of predicted ADEs and targets for drugs and novel compounds were validated by literature. Moreover, mtADENet is freely available at our web server named NetInfer (http://lmmd.ecust.edu.cn/netinfer/). In summary, mtADENet would be a powerful tool for ADE prediction and drug safety assessment in drug discovery and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JINITAIMEI发布了新的文献求助10
5秒前
哈哈完成签到,获得积分10
9秒前
九日橙完成签到 ,获得积分10
10秒前
Fhbvvv完成签到,获得积分20
15秒前
西瓜皮完成签到 ,获得积分10
27秒前
森森完成签到 ,获得积分10
37秒前
Waeiyengyul完成签到,获得积分10
39秒前
41秒前
huhu发布了新的文献求助10
46秒前
46秒前
心灵美千秋完成签到 ,获得积分10
51秒前
研友_59AB85发布了新的文献求助10
52秒前
57秒前
Jasper应助哈哈我采纳,获得10
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
huhu完成签到,获得积分10
1分钟前
1分钟前
1分钟前
田茂青发布了新的文献求助10
1分钟前
临渊之何发布了新的文献求助10
1分钟前
Meyako完成签到 ,获得积分10
1分钟前
1分钟前
哈哈我发布了新的文献求助10
1分钟前
fang完成签到,获得积分20
1分钟前
1分钟前
cjh关闭了cjh文献求助
1分钟前
cnspower应助Pawn采纳,获得50
1分钟前
1分钟前
广州小肥羊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
爆米花应助唠叨的可燕采纳,获得10
1分钟前
青糯完成签到 ,获得积分10
1分钟前
wenhao完成签到 ,获得积分10
2分钟前
明亮紫易完成签到,获得积分10
2分钟前
临渊之何发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3946157
求助须知:如何正确求助?哪些是违规求助? 3490962
关于积分的说明 11058529
捐赠科研通 3221944
什么是DOI,文献DOI怎么找? 1780696
邀请新用户注册赠送积分活动 865774
科研通“疑难数据库(出版商)”最低求助积分说明 800061