End-edge-cloud collaborative learning-aided prediction for high-speed train operation using LSTM

云计算 计算机科学 GSM演进的增强数据速率 人工智能 机器学习 操作系统
作者
Hui Yang,Changyuan Wang,Kunpeng Zhang,Sun Dong
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:160: 104527-104527
标识
DOI:10.1016/j.trc.2024.104527
摘要

This paper aims to incorporate the throttle handle level prediction in high speed train(HST) operation prediction problem to enable the prediction of HST drivers’ activities, in which the key instructions available to HST driver are difficult to determine. Specifically, we consider an end-edge-cloud orchestration system to capture the real-time responses for driver state changes. By adding edge computing nodes, the real-time performance of data collection, transmission, and processing is improved. Our ultimate goal is to guide and regulate train drivers’ activities in the same way, regardless of uncertain factors affecting HST dynamic or kinematic performance. We formulate the problem as a physical-based and data-driven deep learning-aided prediction model and solve it using a novel long short-term memory (LSTM) deep neural network which combines: (i) an off-line approximate training model to learn the time series data in the cloud layer, and (ii) an online prediction process to determine driving strategies in the real-time windows, more in general expressed as driving skill level constraints. To evaluate the performance of our approach, some case studies using the real-world railway infrastructure and HST data have been conducted. The results show that the proposed models produce higher prediction accuracy for both speed and throttle handle level prediction tasks. Compared to the conventional HST operation prediction problem, which considers speed sequences only without throttle handle level consideration, this study finds that jointly modeling speed and throttle handle level actually improves the next operation prediction performance itself, potentially because throttle handle level observations capture the information on HST control dynamics, which may affect operators’ driving choices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
月儿完成签到 ,获得积分10
刚刚
兜兜发布了新的文献求助10
2秒前
小麦完成签到,获得积分10
2秒前
Sugarm发布了新的文献求助10
5秒前
ikun0000完成签到,获得积分10
6秒前
9秒前
9秒前
整齐的飞兰完成签到 ,获得积分10
11秒前
任性小霸王完成签到,获得积分10
13秒前
14秒前
TARTALIA完成签到,获得积分10
14秒前
15秒前
15秒前
赘婿应助北媛采纳,获得10
15秒前
Riggle G完成签到,获得积分10
16秒前
故意的秋烟完成签到,获得积分10
18秒前
20秒前
初遇之时最暖完成签到,获得积分10
20秒前
20秒前
Azhou完成签到,获得积分10
20秒前
我爱睡大觉完成签到,获得积分10
20秒前
seven完成签到,获得积分10
21秒前
21秒前
能干觅夏完成签到 ,获得积分10
22秒前
mahliya完成签到,获得积分10
22秒前
毒蛇如我发布了新的文献求助10
22秒前
兜兜完成签到,获得积分10
25秒前
橘子海完成签到 ,获得积分10
26秒前
认真的一刀完成签到,获得积分10
26秒前
唯有言若完成签到,获得积分10
28秒前
cckyt完成签到,获得积分10
28秒前
祁南松完成签到 ,获得积分20
28秒前
JamesPei应助念念采纳,获得10
29秒前
小岛上的赞助滑手完成签到 ,获得积分10
29秒前
搜集达人应助云宝采纳,获得10
31秒前
彭于彦祖应助科研通管家采纳,获得20
33秒前
情怀应助科研通管家采纳,获得10
33秒前
hjyylab应助科研通管家采纳,获得10
33秒前
充电宝应助科研通管家采纳,获得30
33秒前
丘比特应助科研通管家采纳,获得10
33秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845729
求助须知:如何正确求助?哪些是违规求助? 3388008
关于积分的说明 10551514
捐赠科研通 3108690
什么是DOI,文献DOI怎么找? 1712988
邀请新用户注册赠送积分活动 824550
科研通“疑难数据库(出版商)”最低求助积分说明 774891