Enhancing green total factor productivity through manufacturing output servitization: A case study in China

业务 背景(考古学) 生产力 产业组织 持续性 盈利能力指数 制造业 资源效率 材料效率 中国 资源(消歧) 营销 经济 经济增长 财务 计算机科学 古生物学 法学 生物 计算机网络 生态学 政治学
作者
Hongsen Wang,Martin Lockett,Da Qing He,Yiqing Lv
出处
期刊:Heliyon [Elsevier BV]
卷期号:10 (1): e23769-e23769
标识
DOI:10.1016/j.heliyon.2023.e23769
摘要

In the context of the growing environmental pollution and resource depletion caused by traditional manufacturing industries, the need for sustainable and eco-friendly practices has become a critical issue for the upgrading and transformation of the manufacturing industry worldwide. Based on data from listed manufacturing companies in China, which is the world's largest manufacturing country and exhibits significant diversity regarding the ownership, scale and level of enterprises, the impact of manufacturing output servitization on green total factor productivity (GTFP), which is a measurement of economic efficiency that takes into account environmental impacts, is analyzed in this article. The results show that manufacturing output servitization can improve the GTFP of enterprises, and this can be achieved through mechanisms such as increased profitability and innovation capabilities. The positive effect on the GTFP of enterprises in less developed regions is greater than that in developed regions and is more significant for private and foreign-funded enterprises than for state-owned enterprises. The companies that adhere to the Global Reporting Initiative framework for environmental, social and governance reporting experience a more significant positive impact on GTFP as a result of their manufacturing output servitization efforts. This research offers valuable insights into the potential of servitization as a strategy for enhancing GTFP and provides actionable guidance for policy-makers and industry stakeholders seeking to align manufacturing practices with sustainability goals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助zzx采纳,获得10
1秒前
人群是那么像羊群完成签到,获得积分10
1秒前
Gleaming发布了新的文献求助10
3秒前
淡定的筮完成签到,获得积分20
3秒前
CodeCraft应助神勇的砖头采纳,获得10
4秒前
科研通AI5应助理论家采纳,获得10
4秒前
复杂硬币发布了新的文献求助10
5秒前
dd发布了新的文献求助10
5秒前
小蘑菇应助汉桑波欸采纳,获得10
6秒前
gdh发布了新的文献求助10
7秒前
7秒前
11秒前
逝者如斯只是看着完成签到,获得积分10
11秒前
高兴的小完成签到,获得积分10
11秒前
水逆消退完成签到,获得积分10
11秒前
天真的皓轩完成签到,获得积分10
12秒前
要减肥仰发布了新的文献求助10
16秒前
直率飞烟完成签到 ,获得积分20
17秒前
17秒前
不想起昵称完成签到 ,获得积分10
17秒前
小H完成签到,获得积分10
20秒前
22秒前
一只小羊完成签到,获得积分10
22秒前
22秒前
陀思妥耶夫斯基完成签到 ,获得积分10
23秒前
23秒前
12345完成签到,获得积分10
24秒前
直率的凉面完成签到,获得积分10
24秒前
zzx发布了新的文献求助10
27秒前
熙胜发布了新的文献求助10
27秒前
28秒前
英姑应助自然的听南采纳,获得10
29秒前
小H发布了新的文献求助10
29秒前
天天快乐应助炙热短靴采纳,获得10
31秒前
我不是奶黄包完成签到,获得积分10
33秒前
34秒前
35秒前
38秒前
万能图书馆应助要减肥仰采纳,获得10
38秒前
wanwusheng发布了新的文献求助10
39秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Cheminformatics, QSAR and Machine Learning Applications for Novel Drug Development 200
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836319
求助须知:如何正确求助?哪些是违规求助? 3378629
关于积分的说明 10505444
捐赠科研通 3098281
什么是DOI,文献DOI怎么找? 1706409
邀请新用户注册赠送积分活动 821000
科研通“疑难数据库(出版商)”最低求助积分说明 772413