Bilateral Supervision Network for Semi-Supervised Medical Image Segmentation

人工智能 图像分割 计算机科学 计算机视觉 医学影像学 分割 图像(数学) 模式识别(心理学)
作者
Along He,Tao Li,Juncheng Yan,Kai Wang,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1715-1726 被引量:1
标识
DOI:10.1109/tmi.2023.3347689
摘要

Massive high-quality annotated data is required by fully-supervised learning, which is difficult to obtain for image segmentation since the pixel-level annotation is expensive, especially for medical image segmentation tasks that need domain knowledge. As an alternative solution, semi-supervised learning (SSL) can effectively alleviate the dependence on the annotated samples by leveraging abundant unlabeled samples. Among the SSL methods, mean-teacher (MT) is the most popular one. However, in MT, teacher model's weights are completely determined by student model's weights, which will lead to the training bottleneck at the late training stages. Besides, only pixel-wise consistency is applied for unlabeled data, which ignores the category information and is susceptible to noise. In this paper, we propose a bilateral supervision network with bilateral exponential moving average (bilateral-EMA), named BSNet to overcome these issues. On the one hand, both the student and teacher models are trained on labeled data, and then their weights are updated with the bilateral-EMA, and thus the two models can learn from each other. On the other hand, pseudo labels are used to perform bilateral supervision for unlabeled data. Moreover, for enhancing the supervision, we adopt adversarial learning to enforce the network generate more reliable pseudo labels for unlabeled data. We conduct extensive experiments on three datasets to evaluate the proposed BSNet, and results show that BSNet can improve the semi-supervised segmentation performance by a large margin and surpass other state-of-the-art SSL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助huangninghuang采纳,获得10
1秒前
1秒前
自信的若风完成签到,获得积分10
2秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
好好好完成签到,获得积分10
5秒前
6秒前
7秒前
violet发布了新的文献求助10
7秒前
QL完成签到 ,获得积分10
8秒前
8秒前
chenxilia发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
科研通AI5应助111采纳,获得30
10秒前
10秒前
快乐小马发布了新的文献求助10
10秒前
甄甄完成签到,获得积分10
10秒前
11秒前
huangninghuang完成签到,获得积分20
11秒前
11秒前
英俊的铭应助心灵美盼烟采纳,获得10
11秒前
Y1BOL完成签到,获得积分20
11秒前
LeungYM完成签到 ,获得积分10
12秒前
青枣不甜发布了新的文献求助100
12秒前
水煮发布了新的文献求助10
12秒前
豆沙包发布了新的文献求助10
12秒前
开心的眼睛完成签到,获得积分10
12秒前
13秒前
14秒前
水娃发布了新的文献求助10
14秒前
Owen应助chen采纳,获得10
14秒前
CZJ发布了新的文献求助10
14秒前
15秒前
小救星发布了新的文献求助10
16秒前
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 510
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4692148
求助须知:如何正确求助?哪些是违规求助? 4063484
关于积分的说明 12564036
捐赠科研通 3761631
什么是DOI,文献DOI怎么找? 2077455
邀请新用户注册赠送积分活动 1105950
科研通“疑难数据库(出版商)”最低求助积分说明 984531