亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Bilateral Supervision Network for Semi-Supervised Medical Image Segmentation

人工智能 图像分割 计算机科学 计算机视觉 医学影像学 分割 图像(数学) 模式识别(心理学)
作者
Along He,Tao Li,Juncheng Yan,Kai Wang,Huazhu Fu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (5): 1715-1726 被引量:1
标识
DOI:10.1109/tmi.2023.3347689
摘要

Massive high-quality annotated data is required by fully-supervised learning, which is difficult to obtain for image segmentation since the pixel-level annotation is expensive, especially for medical image segmentation tasks that need domain knowledge. As an alternative solution, semi-supervised learning (SSL) can effectively alleviate the dependence on the annotated samples by leveraging abundant unlabeled samples. Among the SSL methods, mean-teacher (MT) is the most popular one. However, in MT, teacher model's weights are completely determined by student model's weights, which will lead to the training bottleneck at the late training stages. Besides, only pixel-wise consistency is applied for unlabeled data, which ignores the category information and is susceptible to noise. In this paper, we propose a bilateral supervision network with bilateral exponential moving average (bilateral-EMA), named BSNet to overcome these issues. On the one hand, both the student and teacher models are trained on labeled data, and then their weights are updated with the bilateral-EMA, and thus the two models can learn from each other. On the other hand, pseudo labels are used to perform bilateral supervision for unlabeled data. Moreover, for enhancing the supervision, we adopt adversarial learning to enforce the network generate more reliable pseudo labels for unlabeled data. We conduct extensive experiments on three datasets to evaluate the proposed BSNet, and results show that BSNet can improve the semi-supervised segmentation performance by a large margin and surpass other state-of-the-art SSL methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐雨篱边完成签到 ,获得积分10
29秒前
nojego完成签到,获得积分20
34秒前
曹大壮完成签到,获得积分10
46秒前
50秒前
快乐小狗发布了新的文献求助10
54秒前
77发布了新的文献求助30
56秒前
JamesPei应助嘟嘟采纳,获得10
1分钟前
1分钟前
嘟嘟发布了新的文献求助10
2分钟前
2分钟前
111完成签到 ,获得积分10
2分钟前
小胡发布了新的文献求助10
2分钟前
快乐小狗发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
席江海完成签到,获得积分10
3分钟前
SciGPT应助咕咕采纳,获得10
4分钟前
豌豆完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
共享精神应助小胡采纳,获得10
4分钟前
Hello应助咕咕采纳,获得10
4分钟前
nine2652完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
yindi1991完成签到 ,获得积分10
5分钟前
6分钟前
嘟嘟发布了新的文献求助10
6分钟前
嘟嘟完成签到,获得积分20
6分钟前
一只大榴莲完成签到,获得积分10
7分钟前
充电宝应助科研通管家采纳,获得10
7分钟前
所所应助科研通管家采纳,获得10
7分钟前
7分钟前
8分钟前
圈哥完成签到 ,获得积分10
8分钟前
Carlos_Soares发布了新的文献求助10
8分钟前
8分钟前
9分钟前
小胡发布了新的文献求助10
9分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402289
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728