An enhanced ResNet-50 deep learning model for arrhythmia detection using electrocardiogram biomedical indicators

计算机科学 深度学习 人工智能 卷积神经网络 心律失常 机器学习 人工神经网络 数据挖掘 模式识别(心理学) 心房颤动 医学 内科学
作者
R. Anand,S. Lakshmi,D. K. Pandey,Binay Kumar Pandey
出处
期刊:Evolving Systems [Springer Nature]
卷期号:15 (1): 83-97 被引量:63
标识
DOI:10.1007/s12530-023-09559-0
摘要

Electrocardiogram (ECG) is one among the most common detecting techniques in the analysis and detection of cardiac arrhythmia adopted due to its cost efficiency and simplicity. In a clinical routine, ECG database is collected on daily basis and these databases are reviewed manually. Along with other conventional methods, various approaches using machine learning has been proposed in the past few years. But these would require in-depth knowledge on several parameters and pre-processing techniques in the specific domain. This study is aimed at implementing a more reliable deep learning model that has the capacity to diagnose arrhythmia from a database with 109,446 samples in 5 different categories. In our proposed work, we have used deep learning methodologies for the diagnosis and detection of cardiac arrhythmia automatically. Balancing the biasedness in the waveforms from MIT-BIH arrhythmia database, model is developed. MIT-BIH arrhythmia database with the ECG waveforms promises good accuracy. This automated prediction of the disease using CNN and ResNet-18 architectures are compared in terms of accuracy. CNN has accuracy approximately 97.86% and 98.14% for improved ResNet-18. Also, a comparative analysis is done with the proposed model and already existing techniques. Several limitations and future opportunities are also reviewed. We believe it can be used considerably for cardiac arrhythmia prediction worldwide. Based on the results obtained, ResNet-18 architecture can be used as an efficient procedure, that reduces the burden of training a deep convolutional neural network from start, resulting in a technique that is simple to use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nininini发布了新的文献求助10
1秒前
1秒前
2秒前
carly发布了新的文献求助10
3秒前
3秒前
葡萄发布了新的文献求助10
4秒前
5秒前
6秒前
wang发布了新的文献求助20
6秒前
foilage发布了新的文献求助10
7秒前
第四季并用关注了科研通微信公众号
7秒前
7秒前
7秒前
7秒前
欣喜书蕾完成签到,获得积分10
8秒前
8秒前
田様应助曹苍久采纳,获得10
8秒前
9秒前
乐乐完成签到,获得积分10
10秒前
在水一方应助vita采纳,获得10
10秒前
HURMRS关注了科研通微信公众号
10秒前
10秒前
鱼囧发布了新的文献求助10
10秒前
科研通AI6应助lius采纳,获得10
11秒前
11秒前
酷波er应助谦让白玉采纳,获得10
12秒前
13秒前
Oasis发布了新的文献求助10
13秒前
15秒前
雏菊发布了新的文献求助10
16秒前
书记发布了新的文献求助10
16秒前
轩辕沛柔完成签到,获得积分10
17秒前
Akim应助保护番茄采纳,获得10
17秒前
17秒前
深情安青应助xxx采纳,获得10
19秒前
万事顺遂完成签到,获得积分10
20秒前
Ling99完成签到 ,获得积分10
20秒前
情怀应助书记采纳,获得10
21秒前
Akim应助呆萌笑晴采纳,获得10
21秒前
vita发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462452
求助须知:如何正确求助?哪些是违规求助? 4567179
关于积分的说明 14309253
捐赠科研通 4493038
什么是DOI,文献DOI怎么找? 2461391
邀请新用户注册赠送积分活动 1450497
关于科研通互助平台的介绍 1425841