Mechanically Robust Hemostatic Hydrogel Membranes with Programmable Strain-Adaptive Microdomain Entanglement for Wound Treatment in Dynamic Tissues

自愈水凝胶 材料科学 壳聚糖 纳米技术 戊二醛 生物相容性 脚手架 生物医学工程 化学 高分子化学 医学 生物化学 色谱法 冶金
作者
Lu Tan,Chenxi Huyan,Yanqiu Wang,Menghuan Li,Dong Liu,Minghan Liu,Zhong Luo,Kaiyong Cai,Yan Hu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (11): 8360-8382 被引量:27
标识
DOI:10.1021/acsnano.3c12950
摘要

Supramolecular hydrogels emerge as a promising paradigm for sutureless wound management. However, their translation is still challenged by the insufficient mechanical robustness in the context of complex wounds in dynamic tissues. Herein, we report a tissue-adhesive supramolecular hydrogel membrane based on biocompatible precursors for dressing wounds in highly dynamic tissues, featuring robust mechanical resilience through programmable strain-adaptive entanglement among microdomains. Specifically, the hydrogels are synthesized by incorporating a long-chain polyurethane segment into a Schiff base-ligated short-chain oxidized cellulose/quaternized chitosan network via acylhydrazone bonding, which readily establishes interpenetrating entangled microdomains in dynamic cross-linked hydrogel matrices to enhance their tear and fatigue resistance against extreme mechanical stresses. After being placed onto dynamic tissues, the hydrogel dressing could efficiently absorb blood to achieve rapid hemostasis. Moreover, metal ions released from ruptured erythrocytes could be scavenged by the Schiff base linkers to form additional ionic bonds, which would trigger the cross-linking of the short-chain components and establish abundant crystalline microdomains, eventually leading to the in situ stiffening of the hydrogels to endure heavy mechanical loads. Benefiting from its hemostatic capacity and strain adaptable mechanical performance, this hydrogel wound dressing shows promise for the clinical management of various traumatic wounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
灿烂发布了新的文献求助10
刚刚
稳重书双完成签到,获得积分10
刚刚
火星上芹菜完成签到,获得积分10
刚刚
小小狗发布了新的文献求助10
1秒前
1秒前
大模型应助淡然钢笔采纳,获得10
2秒前
2秒前
2秒前
搬砖的发布了新的文献求助10
2秒前
shelemi发布了新的文献求助10
3秒前
晴朗发布了新的文献求助10
3秒前
niejing19发布了新的文献求助10
3秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
千凡发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
香蕉觅云应助shanage采纳,获得10
5秒前
FashionBoy应助w2采纳,获得10
6秒前
bkagyin应助絮絮徐采纳,获得10
6秒前
慕青应助Chang采纳,获得10
7秒前
7秒前
7秒前
青青子衿发布了新的文献求助10
7秒前
静心发布了新的文献求助10
8秒前
8秒前
8秒前
zgw发布了新的文献求助10
8秒前
迅速惜海完成签到,获得积分10
9秒前
9秒前
科研通AI6应助彩色亦云采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668461
求助须知:如何正确求助?哪些是违规求助? 4890899
关于积分的说明 15124429
捐赠科研通 4827351
什么是DOI,文献DOI怎么找? 2584580
邀请新用户注册赠送积分活动 1538453
关于科研通互助平台的介绍 1496742