亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GTCBS-YOLOv5s: A lightweight model for weed species identification in paddy fields

杂草 人工智能 模式识别(心理学) 水田 稳健性(进化) 计算机科学 精确性和召回率 数学 农学 生物 生物化学 基因 操作系统
作者
Yuanyuan Shao,Xianlu Guan,Guantao Xuan,Farui Gao,Wenjie Feng,Guoliang Gao,Qiuyun Wang,Huang Xincheng,Jichang Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108461-108461 被引量:11
标识
DOI:10.1016/j.compag.2023.108461
摘要

Accurate and rapid weed species identification contributes to selective herbicide spraying or robotic weeding. An image-based method for automatic identification of weed species in paddy fields is highly desirable. However, water reflection, soil background, occlusion, and varying growth and illumination make the development of this method challenging. To address this issue, an improved deep learning model GTCBS-YOLOv5s was proposed to identify six weed species in paddy fields, where Ghost, C3Trans and convolutional block attention module (CBAM) were employed to improve weed feature extraction in complex environments. The bidirectional feature pyramid network (BiFPN) coupled with Concat structure was introduced in the Neck network to achieve the multi-scale feature fusion for identifying various weed species. Three different output feature maps in Detect network were utilized to identify weeds of varying sizes. A more comprehensive scale-sensitive intersection over union (SIoU) loss function was adopted to eliminate the redundant generating boxes. The results showed that GTCBS-YOLOv5s model achieved a mean average precision (mAP) of 91.1 % for the test set, and the identification speed reached 85.7 FPS. Robustness tests demonstrated that GTCBS-YOLOv5s obtained satisfactory performance in identifying weeds under various lighting conditions, with precision (P), recall (R) and mAP all greater than 85 %. Occluded weeds were identified with P, R and average precision (AP) greater than 89.8 %, 90.1 % and 90.3 %, respectively. Furthermore, GTCBS-YOLOv5s had good performance in identifying weeds at different growth stages, with P, R and mAP higher than 90.1 %, 89.5 %, and 90.3 % respectively. Compared with the state-of-the-art models, GTCBS-YOLOv5s was highly promising for deployment to the embedded devices for real-time field detection due to its high accuracy, lightweight and robust attributes, as well as fast inference.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
勤劳的小牛蛙完成签到,获得积分20
7秒前
9秒前
34秒前
lalalatiancai完成签到,获得积分10
40秒前
所所应助Fu采纳,获得10
43秒前
49秒前
Fu完成签到,获得积分10
51秒前
Fu发布了新的文献求助10
54秒前
1分钟前
一路微笑完成签到,获得积分10
1分钟前
testmanfuxk完成签到,获得积分10
1分钟前
1分钟前
SciGPT应助韩凡采纳,获得10
2分钟前
2分钟前
哈扎尔完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
韩凡发布了新的文献求助10
2分钟前
2分钟前
2分钟前
OuY发布了新的文献求助10
2分钟前
3分钟前
3分钟前
qingzx发布了新的文献求助10
3分钟前
李昕123完成签到 ,获得积分10
3分钟前
顾矜应助qingzx采纳,获得10
3分钟前
勤恳缘分完成签到,获得积分10
3分钟前
思源应助勤恳缘分采纳,获得10
3分钟前
炸鸡完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
粽子完成签到,获得积分10
3分钟前
3分钟前
张静怡发布了新的文献求助10
3分钟前
rl完成签到,获得积分10
4分钟前
4分钟前
Peppermint完成签到,获得积分10
4分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827212
求助须知:如何正确求助?哪些是违规求助? 3369573
关于积分的说明 10456484
捐赠科研通 3089256
什么是DOI,文献DOI怎么找? 1699738
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251