IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis

元建模 克里金 可靠性(半导体) 计算机科学 蒙特卡罗方法 非线性系统 自适应采样 熵(时间箭头) 采样(信号处理) 重要性抽样 数学优化 随机模拟 算法 数据挖掘 数学 机器学习 统计 物理 滤波器(信号处理) 量子力学 功率(物理) 程序设计语言 计算机视觉
作者
Jin Zhou,Jie Li
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:229: 108824-108824 被引量:25
标识
DOI:10.1016/j.ress.2022.108824
摘要

This article focuses on the adaptive Kriging metamodel-based reliability analysis for reducing a sequential number of calls of the complex original functions. To avoid the repetitive and tedious deterministic response analysis with stochastic simulation method (including Monte Carlo Simulation and its various improvement, such as importance sampling, subset simulation) in reliability analysis, herein a novel sequential sampling strategy related to Kriging metamodel is proposed, which is implemented based on information entropy theory. In addition, the generalized F-discrepancy method is simultaneously quoted to further optimize the candidate pool to improve the effectiveness of the training metamodel. Finally, a new structural reliability analysis method is proposed, which continuously reduces the number of deterministic analysis of structures without sacrificing accuracy. To highlight the applicability of the method and verify its accuracy and effectiveness, a series of typical examples are tested and compared, including highly nonlinear limit state functions, high-dimension performance function with analytic expressions and dynamic reliability analysis of nonlinear engineering structures subject to seismic excitation with implicit performance function. Numerical results show that significant computational savings and desired accuracy can be achieved when dealing with different reliability analysis cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SYLH应助科研通管家采纳,获得20
1秒前
2秒前
石莫言发布了新的文献求助10
2秒前
tian发布了新的文献求助10
2秒前
3秒前
你怎么睡得着觉完成签到 ,获得积分10
4秒前
4秒前
zho应助科研通管家采纳,获得10
4秒前
俊秀的半雪完成签到,获得积分10
5秒前
5秒前
彪壮的小玉完成签到,获得积分0
6秒前
chengmin发布了新的文献求助10
7秒前
7秒前
8秒前
8秒前
yuyu发布了新的文献求助10
9秒前
hhhhh完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
龙龍龖龘发布了新的文献求助10
10秒前
10秒前
CodeCraft应助boshi采纳,获得10
11秒前
HEIKU应助刘秀的猫咪采纳,获得10
11秒前
Jasper应助清新的苑博采纳,获得10
13秒前
ysy发布了新的文献求助10
13秒前
14秒前
科研通AI5应助么么叽采纳,获得10
15秒前
爆米花应助鱼的宇宙采纳,获得10
15秒前
Christina完成签到,获得积分10
15秒前
kunkun发布了新的文献求助10
17秒前
可爱的函函应助chengmin采纳,获得10
17秒前
12rcli发布了新的文献求助10
17秒前
17秒前
18秒前
18秒前
ding应助专注的语堂采纳,获得10
19秒前
Muniira完成签到,获得积分10
20秒前
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Scientific and Medical Knowledge Production, 1796-1918 Volume II: Humanity 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829930
求助须知:如何正确求助?哪些是违规求助? 3372490
关于积分的说明 10472794
捐赠科研通 3092018
什么是DOI,文献DOI怎么找? 1701700
邀请新用户注册赠送积分活动 818590
科研通“疑难数据库(出版商)”最低求助积分说明 770975