iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local–Global Feature Extraction Network

卷积神经网络 染色质 计算生物学 人工智能 人工神经网络 融合 特征提取 计算机科学 稳健性(进化) DNA 生物 机器学习 基因 遗传学 语言学 哲学
作者
Lei-Shan Wang,Zhan-Li Sun
出处
期刊:Interdisciplinary Sciences: Computational Life Sciences [Springer Science+Business Media]
卷期号:15 (2): 155-170
标识
DOI:10.1007/s12539-022-00538-8
摘要

The DNase I hypersensitive sites (DHSs) are active regions on chromatin that have been found to be highly sensitive to DNase I. These regions contain various cis-regulatory elements, including promoters, enhancers and silencers. Accurate identification of DHSs helps researchers better understand the transcriptional machinery of DNA and deepen the knowledge of functional DNA elements in non-coding sequences. Researchers have developed many methods based on traditional experiments and machine learning to identify DHSs. However, low prediction accuracy and robustness limit their application in genetics research. In this paper, a novel computational approach based on deep learning is proposed by feature fusion and local–global feature extraction network to identify DHSs in mouse, named iDHS-FFLG. First of all, multiple binary features of nucleotides are fused to better express sequence information. Then, a network consisting of the convolutional neural network (CNN), bidirectional long short-term memory (BiLSTM) and self-attention mechanism is designed to extract local features and global contextual associations. In the end, the prediction module is applied to distinguish between DHSs and non-DHSs. The results of several experiments demonstrate the superior performances of iDHS-FFLG compared to the latest methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2025zmx发布了新的文献求助30
1秒前
1秒前
科研通AI5应助yyx采纳,获得10
1秒前
可爱的函函应助主旋律采纳,获得10
2秒前
3秒前
4秒前
丶whist完成签到,获得积分10
5秒前
科研通AI5应助Zekun采纳,获得10
6秒前
maoyuni发布了新的文献求助10
6秒前
搜集达人应助茂茂采纳,获得10
8秒前
8秒前
9秒前
深藏blue发布了新的文献求助10
9秒前
田様应助wenlin采纳,获得10
9秒前
可爱的函函应助雪山飞龙采纳,获得10
10秒前
10秒前
杭谷波完成签到,获得积分10
10秒前
李子敬完成签到,获得积分10
11秒前
陈小纯完成签到,获得积分20
12秒前
13秒前
yyx发布了新的文献求助10
14秒前
14秒前
画龙完成签到,获得积分10
15秒前
田様应助云上人采纳,获得10
17秒前
clairevox完成签到,获得积分10
20秒前
科研通AI5应助Adzuki0812采纳,获得10
21秒前
22秒前
22秒前
深情安青应助深藏blue采纳,获得10
23秒前
大模型应助闲得追月时采纳,获得30
24秒前
24秒前
24秒前
Willing发布了新的文献求助10
24秒前
香蕉觅云应助孤独灰狼采纳,获得10
24秒前
25秒前
26秒前
胡先生发布了新的文献求助30
27秒前
云上人发布了新的文献求助10
28秒前
sissi完成签到,获得积分10
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795227
求助须知:如何正确求助?哪些是违规求助? 3340218
关于积分的说明 10299325
捐赠科研通 3056829
什么是DOI,文献DOI怎么找? 1677185
邀请新用户注册赠送积分活动 805274
科研通“疑难数据库(出版商)”最低求助积分说明 762420