光合作用
开枪
磷
动物科学
生物
生态生理学
二氧化碳
磷酸盐
牧场
农学
园艺
植物
环境化学
化学
生态学
生物化学
有机化学
作者
D. J. Barrett,Roger M. Gifford
摘要
Limited phosphorus (P) availability in Australia's highly weathered soils may constrain an increase in terrestrial net primary productivity (NPP) with the globally increasing atmospheric CO 2 concentration. We examined whether an Australian temperate pasture grass (Danthonia richardsonii) grown in sand culture and supplied solely with virtually insoluble Al- and Fe-phosphate was able to increase C-gain when exposed to elevated (731 µmol mol −1 ) compared with ambient (379 µmol mol −1 ) CO 2 concentrations. When supplied with 8 mg kg −1 insoluble P concentration, total citrate efflux by root systems (µmol h −1 ), plant P uptake, shoot photosynthesis rates and plant mass were all significantly greater at elevated than at ambient CO 2 after a growth period of between 55 and 63 days. In this treatment, although the P concentration of the rooting medium limited growth at ambient CO 2 , elevated CO 2 increased P-uptake from the non-labile source, increased photosynthesis rates per unit shoot soluble-P and increased plant mass. At P concentrations lower than 8 mg kg −1 , plant mass, specific citrate efflux and maximum leaf carboxylation rates were limited by the amount of P available in the rooting medium and no CO 2 effect was observed. In all treatments, carbon supply did not appear to limit citrate efflux. Where an increase in P uptake at elevated CO 2 was achieved, it was due to an increase in root mass (indicative of a potentially larger soil volume explored) rather than to increased specific rates of citrate efflux. Above 8 mg kg −1 , the supplied P concentration was sufficient that minimal rates of specific citrate efflux alone solubilised enough P for growth and a strong CO 2 effect on plant mass, photosynthesis and P uptake was observed.
科研通智能强力驱动
Strongly Powered by AbleSci AI