化学
分散性
沸腾
成核
纳米颗粒
胶体金
沸点
潜热
化学工程
纳米技术
热力学
材料科学
有机化学
物理
工程类
作者
Wenchao Ding,Peina Zhang,Yijing Li,Haibing Xia,Dayang Wang,Xutang Tao
出处
期刊:ChemPhysChem
[Wiley]
日期:2014-11-12
卷期号:16 (2): 447-454
被引量:32
标识
DOI:10.1002/cphc.201402648
摘要
Abstract The Turkevich method, involving the reduction of HAuCl 4 with citrate in boiling water, allows the facile production of monodisperse, quasispherical gold nanoparticles (AuNPs). Although, it is well‐known that the size of the AuNPs obtained with the same recipe vary slightly (as little as approximately 4 nm), but noticeably, from one report to another, it has rarely been studied. The present work demonstrates that this size variation can be reconciled by the small, but noticeable, effect that the latent heat in boiling water has on the size of the AuNPs obtained by using the Turkevich method. The increase in latent heat during water boiling caused an approximately 3 nm reduction in the size of the as‐prepared AuNPs; this reduction in size is mainly a result of accelerated nucleation driven by the extra heat. It was further demonstrated that, the heating temperature can be utilized as an additional measure to adjust the growth rate of AuNPs during the reduction of HAuCl 4 with citrate in boiling water. Therefore, the latent heat of boiling solvents may provide one way to control nucleation and growth in the synthesis of monodisperse nanoparticles.
科研通智能强力驱动
Strongly Powered by AbleSci AI