先天免疫系统
生物
受体
细胞生物学
钻机-I
伤亡人数
Toll样受体
化学
免疫学
遗传学
作者
Taro Kawai,Shizuo Akira
标识
DOI:10.1196/annals.1443.020
摘要
Toll-like receptors (TLRs) and RIG-I-like receptors (RLRs) constitute distinct families of pattern-recognition receptors that sense nucleic acids derived from viruses and trigger antiviral innate immune responses. TLR3, TLR7, and TLR9 are membrane proteins localized to the endosome that recognize viral double-stranded RNA, single-stranded RNA, and DNA, respectively, while RLRs, including RIG-I, Mda5, and LGP2, are cytoplasmic proteins that recognize viral RNA. Upon recognition of these nucleic acid species, TLRs and RLRs recruit specific intracellular adaptor proteins to initiate signaling pathways culminating in activation of NF-kappaB, MAP kinases, and IRFs that control the transcription of genes encoding type I interferon and other inflammatory cytokines, which are important for eliminating viruses. Here, we review recent insights into the signaling pathways initiated by TLR and RLR and their roles in innate and adaptive immune responses.
科研通智能强力驱动
Strongly Powered by AbleSci AI