纳米颗粒
壳体(结构)
锂(药物)
材料科学
碳纤维
化学工程
离子
纳米技术
化学
复合数
复合材料
有机化学
工程类
医学
内分泌学
作者
Jianan Zhang,Kaixi Wang,Qun Xu,Yunchun Zhou,Fangyi Cheng,Shaojun Guo
出处
期刊:ACS Nano
[American Chemical Society]
日期:2015-02-26
卷期号:9 (3): 3369-3376
被引量:220
标识
DOI:10.1021/acsnano.5b00760
摘要
To well address the problems of large volume change and dissolution of Fe3O4 nanomaterials during Li(+) intercalation/extraction, herein we demonstrate a one-step in situ nanospace-confined pyrolysis strategy for robust yolk-shell nanospindles with very sufficient internal void space (VSIVS) for high-rate and long-term lithium ion batteries (LIBs), in which an Fe3O4@Fe3C core@shell nanoparticle is well confined in the compartment of a hollow carbon nanospindle. This particular structure can not only introduce VSIVS to accommodate volume change of Fe3O4 but also afford a dual shell of Fe3C and carbon to restrict Fe3O4 dissolution, thus providing dual roles for greatly improving the capacity retention. As a consequence, Fe3O4@Fe3C-C yolk-shell nanospindles deliver a high reversible capacity of 1128.3 mAh g(-1) at even 500 mA g(-1), excellent high rate capacity (604.8 mAh g(-1) at 2000 mA g(-1)), and prolonged cycling life (maintaining 1120.2 mAh g(-1) at 500 mA g(-1) for 100 cycles) for LIBs, which are much better than those of Fe3O4@C core@shell nanospindles and Fe3O4 nanoparticles. The present Fe3O4@Fe3C-C yolk-shell nanospindles are the most efficient Fe3O4-based anode materials ever reported for LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI