已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Structure of S-shaped growth in innovation diffusion

拐点 增长曲线(统计) 人口 扩散 计量经济学 统计物理学 介观物理学 经济 数学 物理 凝聚态物理 几何学 热力学 社会学 人口学
作者
Shinsuke Shimogawa,Miyuki Shinno,Hiroshi Saitō
出处
期刊:Physical Review E [American Physical Society]
卷期号:85 (5) 被引量:19
标识
DOI:10.1103/physreve.85.056121
摘要

A basic question on innovation diffusion is why the growth curve of the adopter population in a large society is often S shaped. From macroscopic, microscopic, and mesoscopic viewpoints, the growth of the adopter population is observed as the growth curve, individual adoptions, and differences among individual adoptions, respectively. The S shape can be explained if an empirical model of the growth curve can be deduced from models of microscopic and mesoscopic structures. However, even the structure of growth curve has not been revealed yet because long-term extrapolations by proposed models of S-shaped curves are unstable and it has been very difficult to predict the long-term growth and final adopter population. This paper studies the S-shaped growth from the viewpoint of social regularities. Simple methods to analyze power laws enable us to extract the structure of the growth curve directly from the growth data of recent basic telecommunication services. This empirical model of growth curve is singular at the inflection point and a logarithmic function of time after this point, which explains the unstable extrapolations obtained using previously proposed models and the difficulty in predicting the final adopter population. Because the empirical S curve can be expressed in terms of two power laws of the regularity found in social performances of individuals, we propose the hypothesis that the S shape represents the heterogeneity of the adopter population, and the heterogeneity parameter is distributed under the regularity in social performances of individuals. This hypothesis is so powerful as to yield models of microscopic and mesoscopic structures. In the microscopic model, each potential adopter adopts the innovation when the information accumulated by the learning about the innovation exceeds a threshold. The accumulation rate of information is heterogeneous among the adopter population, whereas the threshold is a constant, which is the opposite of previously proposed models. In the mesoscopic model, flows of innovation information incoming to individuals are organized as dimorphic and partially clustered. These microscopic and mesoscopic models yield the empirical model of the S curve and explain the S shape as representing the regularities of information flows generated through a social self-organization. To demonstrate the validity and importance of the hypothesis, the models of three level structures are applied to reveal the mechanism determining and differentiating diffusion speeds. The empirical model of S curves implies that the coefficient of variation of the flow rates determines the diffusion speed for later adopters. Based on this property, a model describing the inside of information flow clusters can be given, which provides a formula interconnecting the diffusion speed, cluster populations, and a network topological parameter of the flow clusters. For two recent basic telecommunication services in Japan, the formula represents the variety of speeds in different areas and enables us to explain speed gaps between urban and rural areas and between the two services. Furthermore, the formula provides a method to estimate the final adopter population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
失眠采白发布了新的文献求助10
3秒前
嗯嗯完成签到 ,获得积分10
11秒前
小二郎应助小杨采纳,获得10
14秒前
可乐不加冰完成签到,获得积分10
17秒前
Infinite_plus0完成签到 ,获得积分10
21秒前
机智傀斗完成签到 ,获得积分10
23秒前
没有昵称完成签到 ,获得积分10
25秒前
小李老博应助科研通管家采纳,获得10
25秒前
桐桐应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
蓝天海完成签到,获得积分0
28秒前
bob完成签到 ,获得积分10
29秒前
31秒前
独指蜗牛完成签到 ,获得积分10
32秒前
Solomon完成签到 ,获得积分0
33秒前
34秒前
小遇完成签到 ,获得积分10
36秒前
大东东发布了新的文献求助10
37秒前
苏苏发布了新的文献求助10
39秒前
42秒前
爆米花应助敏感的板栗采纳,获得10
45秒前
大东东完成签到,获得积分10
45秒前
隐形曼青应助coral采纳,获得10
46秒前
顾矜应助小元采纳,获得10
47秒前
47秒前
janice116688完成签到,获得积分10
48秒前
49秒前
十七完成签到 ,获得积分10
50秒前
烟花应助LLLL采纳,获得30
52秒前
小杨发布了新的文献求助10
52秒前
zho应助xyg采纳,获得10
53秒前
LXYSB发布了新的文献求助10
53秒前
yf完成签到 ,获得积分10
55秒前
SciGPT应助ccalvintan采纳,获得10
55秒前
55秒前
vvv完成签到 ,获得积分10
57秒前
苏苏完成签到,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777504
求助须知:如何正确求助?哪些是违规求助? 3322864
关于积分的说明 10212146
捐赠科研通 3038215
什么是DOI,文献DOI怎么找? 1667229
邀请新用户注册赠送积分活动 798050
科研通“疑难数据库(出版商)”最低求助积分说明 758201