Wavelet restoration of medical pulse-echo ultrasound images in an EM framework

斑点图案 小波 人工智能 分段 图像复原 计算机科学 图像质量 计算机视觉 模式识别(心理学) 图像处理 数学 图像(数学) 数学分析
作者
James Ng,Richard W. Prager,Nick Kingsbury,Graham M. Treece,Andrew H. Gee
出处
期刊:IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control [Institute of Electrical and Electronics Engineers]
卷期号:54 (3): 550-568 被引量:64
标识
DOI:10.1109/tuffc.2007.278
摘要

The clinical utility of pulse-echo ultrasound images is severely limited by inherent poor resolution that impacts negatively on their diagnostic potential. Research into the enhancement of image quality has mostly been concentrated in the areas of blind image restoration and speckle removal, with little regard for accurate modeling of the underlying tissue reflectivity that is imaged. The acoustic response of soft biological tissues has statistics that differ substantially from the natural images considered in mainstream image processing: although, on a macroscopic scale, the overall tissue echogenicity does behave somewhat like a natural image and varies piecewise-smoothly, on a microscopic scale, the tissue reflectivity exhibits a pseudo-random texture (manifested in the amplitude image as speckle) due to the dense concentrations of small, weakly scattering particles. Recognizing that this pseudo-random texture is diagnostically important for tissue identification, we propose modeling tissue reflectivity as the product of a piecewise-smooth echogenicity map and a field of uncorrelated, identically distributed random variables. We demonstrate how this model of tissue reflectivity can be exploited in an expectation-maximization (EM) algorithm that simultaneously solves the image restoration problem and the speckle removal problem by iteratively alternating between Wiener filtering (to solve for the tissue reflectivity) and wavelet-based denoising (to solve for the echogenicity map). Our simulation and in vitro results indicate that our EM algorithm is capable of producing restored images that have better image quality and greater fidelity to the true tissue reflectivity than other restoration techniques based on simpler regularizing constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助www采纳,获得10
刚刚
土土不吃土应助开放金鱼采纳,获得10
刚刚
刚刚
Hello应助执着千青采纳,获得10
1秒前
1秒前
1秒前
研友_ZbMNPn完成签到,获得积分10
1秒前
HUGHIE发布了新的文献求助10
2秒前
丹丹发布了新的文献求助10
2秒前
科研通AI2S应助罗山柳采纳,获得10
2秒前
科研通AI5应助chenhua5460采纳,获得10
2秒前
痕丶歆完成签到 ,获得积分10
2秒前
百杜发布了新的文献求助10
3秒前
西红柿发布了新的文献求助10
3秒前
香蕉乐萱发布了新的文献求助10
3秒前
liam发布了新的文献求助10
4秒前
苯环超人完成签到,获得积分10
4秒前
lalala发布了新的文献求助10
5秒前
5秒前
安静的凡松完成签到,获得积分10
6秒前
6秒前
Neko完成签到,获得积分10
6秒前
nihaoya完成签到,获得积分10
8秒前
小二郎应助Valentina采纳,获得10
9秒前
丹丹完成签到,获得积分10
9秒前
英俊的铭应助失眠的毛豆采纳,获得10
10秒前
李爱国应助安静的凡松采纳,获得10
10秒前
10秒前
爱吃蔬菜完成签到,获得积分10
10秒前
biozy完成签到,获得积分10
10秒前
11秒前
大模型应助哈哈哈哈采纳,获得10
11秒前
汉堡包应助西红柿采纳,获得10
11秒前
12秒前
12秒前
13秒前
13秒前
Y_发布了新的文献求助10
14秒前
An2ni0完成签到,获得积分10
14秒前
Yiy完成签到,获得积分10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842679
求助须知:如何正确求助?哪些是违规求助? 3384676
关于积分的说明 10536789
捐赠科研通 3105234
什么是DOI,文献DOI怎么找? 1710162
邀请新用户注册赠送积分活动 823493
科研通“疑难数据库(出版商)”最低求助积分说明 774110