概化理论
联营
形成性评价
选择(遗传算法)
鉴定(生物学)
一般化
数据收集
管理科学
计算机科学
案例选择
变化(天文学)
运筹学
社会学
心理学
认识论
人工智能
数学教育
社会科学
医学
经济
工程类
哲学
发展心理学
植物
外科
物理
天体物理学
生物
作者
Sangeeta Mookherji,Anne LaFond
出处
期刊:Evaluation
[SAGE]
日期:2013-07-01
卷期号:19 (3): 284-303
被引量:19
标识
DOI:10.1177/1356389013495212
摘要
This article considers the challenges of generalizability related to case studies, and specifically for the in-depth case studies of the Africa Routine Immunization System Essentials (ARISE) project. The article describes how these challenges were addressed, by developing a Theory of Change to frame case selection strategies, data collection, and analysis, including synthesis of findings across multiple cases. The authors then consider: the importance of grounding generalizability in theory; balancing within-and cross-case analyses for synthesis; and using theory-based case selection, as ways to support generalizability of the case study findings. Multiple case studies should sequence analysis as: 1) within-case analysis; 2) identification of replicated findings and implementation variation across cases; and 3) synthesis across cases, pooling the data. Case selection should be a stand-alone, formative part of case study research. The lessons from the ARISE case studies suggest that these are important ways in which case study methodology can be strengthened.
科研通智能强力驱动
Strongly Powered by AbleSci AI