神经形态工程学
材料科学
光电子学
计算机科学
光电二极管
电阻随机存取存储器
图像处理
噪音(视频)
特征提取
光学相关器
人工智能
特征(语言学)
发光二极管
人工神经网络
电压
电子工程
偏压
计算机数据存储
电阻式触摸屏
异质结
碳纳米管
数字光处理
非易失性存储器
像素
图像传感器
数字图像处理
机器视觉
人类视觉系统模型
CMOS芯片
RGB颜色模型
二进制数
纳米技术
块(置换群论)
计算机硬件
计算机视觉
移动设备
作者
Linlin Hou,Zhizhi Wang,Yaming Hu,Guangliang Li,Wen Si,Jinlong Ma,Guanglan Liao,Tielin Shi,Hu Long
标识
DOI:10.1002/adfm.202523017
摘要
Abstract The human visual system integrates perception, memory, and processing in a compact, energy‐efficient architecture, inspiring optoelectronic neuromorphic devices. However, most existing systems rely on external gate voltages and complex circuitry, hindering integration and energy efficiency. Moreover, using multiple heterogeneous materials compromises stability and complicates mechanism analysis. Here, a two‐terminal optoelectronic resistive random‐access memory (ORRAM) system based on a tellurium/ carbon nanotube (Te@CNT) heterostructure is presented that integrates optical sensing, information storage, and image preprocessing. Strong interfacial binding and band bending enable nonvolatile optical storage at 0.1 V bias with enhanced stability. The device exhibits tunable synaptic dynamics, classifies 16 binary inputs, and maps digital to analog signals nonlinearly. Integrated into neural networks, the ORRAM array improves feature extraction and noise suppression, achieving 99.17% recognition accuracy within only 10 training epochs. This work provides ideas for low‐power and compact neuromorphic vision systems.
科研通智能强力驱动
Strongly Powered by AbleSci AI