Learning high-fidelity robot self-model with articulated 3D Gaussian splatting

人工智能 反向动力学 计算机科学 运动学 计算机视觉 人工神经网络 机器人 混合模型 组分(热力学) 机器人运动学 椭球体 转化(遗传学) 曲面(拓扑) 机器人学 正向运动学 高斯分布 运动规划 运动捕捉 卷积神经网络 构造(python库) 数据建模 高斯过程 实体造型 深度学习 高斯曲率
作者
Kejun Hu,Peng Yu,Ning Tan
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
标识
DOI:10.1177/02783649251396980
摘要

Self-modeling enables robots to learn task-agnostic models of their morphology and kinematics based on data that can be automatically collected, with minimal human intervention and prior information, thereby enhancing machine intelligence. Recent research has highlighted the potential of data-driven technology in modeling the morphology and kinematics of robots. However, existing self-modeling methods suffer from either low modeling quality or excessive data acquisition costs in equipment. Beyond morphology and kinematics, surface color is also a crucial component of robots, which is challenging to model and remains unexplored. In this work, a high-quality, surface color-aware, and link-level method is proposed for robot self-modeling. We utilize three-dimensional (3D) Gaussians to represent the static morphology and surface color of robots, and cluster the 3D Gaussians to construct neural ellipsoid bones, whose deformations are controlled by the transformation matrices generated by a kinematic neural network. The 3D Gaussians and kinematic neural network are trained using data pairs composed of joint angles, camera parameters, and multi-view images without depth information. By feeding the kinematic neural network with joint angles, we can utilize the well-trained model to describe the corresponding morphology, kinematics, and surface color of robots at the link level, and render robot images from different perspectives with the aid of 3D Gaussian splatting. Furthermore, we demonstrate that the established model can be exploited to perform downstream tasks such as motion planning and inverse kinematics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
威武的天德完成签到,获得积分10
1秒前
Lymtics发布了新的文献求助10
1秒前
1秒前
CipherSage应助年轻小笼包采纳,获得10
2秒前
2秒前
2秒前
2秒前
weizhao发布了新的文献求助10
2秒前
安宁完成签到 ,获得积分20
3秒前
柳絮吹雪发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
搜集达人应助耳冉采纳,获得10
4秒前
5秒前
酷波er应助名卡卡采纳,获得10
5秒前
科研通AI6应助tr采纳,获得10
6秒前
南殊爱吃鱼粮完成签到,获得积分10
6秒前
6秒前
李健应助REX采纳,获得10
7秒前
janice发布了新的文献求助10
7秒前
7秒前
复杂不尤发布了新的文献求助10
7秒前
小白完成签到,获得积分10
7秒前
ishi卡哇伊发布了新的文献求助10
7秒前
8秒前
善学以致用应助木木三采纳,获得10
8秒前
小呆呆发布了新的文献求助10
8秒前
8秒前
8秒前
77发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
生动从蓉发布了新的文献求助10
9秒前
可爱的函函应助xiaoyi采纳,获得10
9秒前
无敌霸王花应助负责御姐采纳,获得20
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262149
求助须知:如何正确求助?哪些是违规求助? 4423231
关于积分的说明 13769006
捐赠科研通 4297780
什么是DOI,文献DOI怎么找? 2358130
邀请新用户注册赠送积分活动 1354509
关于科研通互助平台的介绍 1315669