Systematic Review of Artificial Intelligence Applications in Clinical Trialsfor Central Nervous System Injuries

医学 临床试验 数据提取 物理医学与康复 心理干预 脊髓损伤 重症监护医学 冲程(发动机) 梅德林 中枢神经系统 系统回顾 临床研究设计 物理疗法 随机对照试验 创伤性脑损伤
作者
Xiangyu Lu,Xiao Xiao,Yilei Wu,Yong-Gang Wei,Bo Li
出处
期刊:Current Neuropharmacology [Bentham Science]
卷期号:24
标识
DOI:10.2174/011570159x443258251114091930
摘要

Introduction: Artificial intelligence (AI) has emerged as a promising tool for diagnosing, managing, and treating the injuries of the central nervous system (CNS). The purpose of this study was to evaluate the AI-driven approaches in clinical trials for CNS diseases Methods: A systematic search of the ClinicalTrials.gov, PubMed, Ovid, and Web of Science databases was conducted to identify interventional trials focusing on CNS injuries. Only interventional studies investigating AI applications in CNS injuries were included, while those targeting neurodegenerative diseases were excluded. Data extraction was performed using a self-designed form. Results: A total of 51 AI-driven clinical trials for CNS injuries were identified. Most trials focused on screening, diagnosis, monitoring, supportive care, prevention, and treatment, and were primarily conducted in China, the USA, and Europe. The targeted conditions included stroke and its sequelae, traumatic brain injury, and spinal cord injury. All trials employed AI-based tools supported by diverse algorithms, such as convolutional neural networks (CNN), extreme gradient boosting (XGBoost), and K-nearest neighbors (KNN). However, only 21.6% (11/51) of the trials reported outcome data, with 10 demonstrating functional improvements, mainly in motor, swallowing, and neurological performance. Notably, 25.5% of the trials incorporated patient-reported outcome measures (PROMs). Discussion: This study demonstrates the growing application of AI in CNS injury management, particularly in diagnosis and treatment. However, the limited reporting of outcomes and underuse of PROMs suggest that most interventions remain in early stages of clinical translation. Standardized trial designs, patient-centered measures, and rigorous performance validation will be essential to ensure the meaningful integration of AI into clinical practice. Conclusion: AI-based clinical trials for CNS injuries are on the rise, with a focus on diagnosis and treatment. Future trials should prioritize standardized designs, integration of PROMs, and comprehensive performance metrics to ensure clinically meaningful evaluation of AI interventions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wujiaman345完成签到,获得积分10
刚刚
天真涵双完成签到,获得积分10
刚刚
FAN完成签到,获得积分10
1秒前
芙瑞完成签到 ,获得积分10
1秒前
jingyu完成签到,获得积分10
1秒前
星熠完成签到,获得积分10
1秒前
你好纠结伦完成签到,获得积分10
1秒前
坚强的觅露完成签到 ,获得积分10
2秒前
恐怖稽器人完成签到,获得积分10
2秒前
2秒前
丹枫飘锦发布了新的文献求助30
2秒前
清爽的以松完成签到,获得积分10
3秒前
3秒前
Frank应助glycine采纳,获得10
3秒前
搜集达人应助su采纳,获得10
4秒前
iShine完成签到,获得积分10
5秒前
星先生完成签到 ,获得积分10
5秒前
小智完成签到,获得积分10
5秒前
8R60d8应助ernest采纳,获得10
5秒前
5秒前
害羞的夏旋完成签到,获得积分10
5秒前
雪花完成签到,获得积分10
6秒前
神券胀得难受完成签到,获得积分10
6秒前
小马甲应助qazw124采纳,获得10
7秒前
依霏完成签到,获得积分10
7秒前
共享精神应助昔时旧日采纳,获得10
8秒前
英俊枫发布了新的文献求助10
8秒前
hjhhjh发布了新的文献求助10
8秒前
烟花应助小抱枕采纳,获得10
9秒前
不安愚志完成签到 ,获得积分10
9秒前
9秒前
独行者完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
QH完成签到,获得积分10
10秒前
林岚完成签到,获得积分10
10秒前
企鹅在研究吃虫子完成签到,获得积分10
10秒前
洛洛1完成签到,获得积分10
10秒前
10秒前
zz完成签到,获得积分10
10秒前
AE86完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5470908
求助须知:如何正确求助?哪些是违规求助? 4573701
关于积分的说明 14340301
捐赠科研通 4500768
什么是DOI,文献DOI怎么找? 2465961
邀请新用户注册赠送积分活动 1454202
关于科研通互助平台的介绍 1428889