Global Habitat Analysis with Multi-graph Fusion Framework of Postoperative MRI for Predicting Radiotherapy Treatment Response in Glioma Patients

可解释性 计算机科学 人工智能 栖息地 磁共振成像 图形 机器学习 无线电技术 非参数统计 参数统计 医学 生态学 放射科 生物 数学 统计 理论计算机科学
作者
Zhaoran Wang,Lin Lin,Zongtao Hu,Hongzhi Wang,Qiupu Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-14
标识
DOI:10.1109/jbhi.2025.3592811
摘要

Traditional methods for predicting treatment response often rely on readily available clinical factors. However, these methods often lack the granularity to capture the complex interplay between tumor heterogeneity and treatment efficacy. A Multi-graph Fusion (MGF) model that uses habitat subregion-derived radiomic features may help predicting the response to radiotherapy in glioma patients. Firstly, three structural and three physiological habitat regions were delineated using multi-parametric magnetic resonance imaging sequences. Then radiomic features derived from these habitat subregions were used to construct MGF model, which were trained on different combinations of habitat subregions. Each view corresponded to a graph constructed from a specific tumor habitat subregion. Lastly, proposed multi-view fusion module was employed to interpret critical views and interactions for predicting treatment response, while GNNExplainer was used to elucidate the contributions of each view. The MGF model incorporating all habitats achieved the highest area under the curve values of 0.848 (95% CI: 0.832-0.863) for the training cohort and 0.792 (95% CI: 0.767-0.818) for the validation cohort in predicting treatment response. The attention values indicated that physiological habitat 3 held the highest significance. The GNNExplainer revealed key nodes and radiomic features in each view. The MGF model utilizing all habitats-derived radiomics demonstrated the best performance in predicting treatment response. The combination of multi-view fusion module and GNNExplainer enables the framework to capture complex contextual information across six habitat subregions and provides interpretability regarding the factors influencing treatment response predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
无极微光应助ywjkeyantong采纳,获得20
1秒前
zhang完成签到,获得积分10
1秒前
xingxing完成签到 ,获得积分10
2秒前
2秒前
奋斗完成签到,获得积分20
2秒前
2秒前
在水一方应助神仙鱼recept采纳,获得10
3秒前
3秒前
顾矜应助何书易采纳,获得10
3秒前
3秒前
3秒前
李健的小迷弟应助孙伟健采纳,获得10
5秒前
Thrain完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
volition发布了新的文献求助10
7秒前
liiiiiii发布了新的文献求助10
7秒前
7秒前
奋斗发布了新的文献求助10
8秒前
Up完成签到,获得积分10
8秒前
心楠发布了新的文献求助30
8秒前
绿竹发布了新的文献求助10
9秒前
酷波er应助林飞云采纳,获得10
9秒前
9秒前
10秒前
LEO完成签到,获得积分10
11秒前
11秒前
做科研的小施同学完成签到,获得积分10
13秒前
13秒前
刘小白发布了新的文献求助10
13秒前
啦啦啦完成签到 ,获得积分10
14秒前
14秒前
15秒前
水123发布了新的文献求助10
15秒前
15秒前
lucky完成签到,获得积分10
16秒前
科研通AI6应助无奈水儿采纳,获得10
16秒前
郭亮发布了新的文献求助10
16秒前
17秒前
didibaba完成签到,获得积分20
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601126
求助须知:如何正确求助?哪些是违规求助? 4686631
关于积分的说明 14845345
捐赠科研通 4679752
什么是DOI,文献DOI怎么找? 2539214
邀请新用户注册赠送积分活动 1506081
关于科研通互助平台的介绍 1471266