摘要
Lung cancer (LC), with non-small-cell lung cancer (NSCLC) as its predominant subtype, remains the leading cause of cancer-related mortality worldwide. While immune checkpoint inhibitors (ICIs) have redefined the therapeutic paradigm in advanced NSCLC, durable responses are confined to a limited subset of patients. A major clinical challenge persists: the inability to accurately predict which patients will derive meaningful benefit, which will exhibit primary resistance, and which are at risk for severe immune-related toxicities. The imperative to individualize ICI therapy necessitates robust, dynamic, and accessible biomarkers. Liquid biopsy has emerged as a transformative, minimally invasive tool that enables real-time molecular and immunologic profiling. Through analysis of circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), exosomes, and peripheral blood immune components, liquid biopsy offers a window into both tumor intrinsic and host-related determinants of ICI response. These biomarkers not only hold promise for identifying predictive signatures—such as tumor mutational burden, neoantigen landscape, or immune activation states—but also for uncovering mechanisms of acquired resistance and guiding treatment adaptation. Beyond immunotherapy, liquid biopsy plays an increasingly central role in the landscape of targeted therapies, allowing early detection of actionable driver mutations and resistance mechanisms (e.g., EGFR T790M, MET amplification, and ALK fusion variants). Importantly, serial sampling via liquid biopsy facilitates longitudinal disease monitoring and timely therapeutic intervention without the need for repeated tissue biopsies. By guiding therapy selection, monitoring response, and detecting resistance early, liquid biopsy has the potential to significantly improve outcomes in NSCLC.