ABSTRACT In energy constrained application scenarios, self‐powered systems (SPSs) are gradually emerging as a core technological pathway for enabling distributed intelligent sensing. High‐entropy energy, such as micro‐wind, vibrations, water motion, and human activity, is widely available but difficult to harness due to its low density, randomness, and spatiotemporal fragmentation. Triboelectric nanogenerators (TENGs), with high efficiency to low‐frequency and irregular mechanical stimuli, offer a promising solution for efficient energy harvesting, driving the advancement of SPSs with high‐entropy distribution. This review outlines the basic concepts and recent developments of TENG‐driven SPSs, focusing on strategies for energy harvesting, power management, and system integration. It highlights structural optimization and performance enhancement under typical high‐entropy scenarios and analyzes key challenges in energy conversion, power regulation, and load management. Finally, the potential applications of TENG‐driven SPSs are discussed in emerging smart fields such as infrastructure monitoring, low‐altitude economy, mobile intelligent devices, and ocean sensing networks.