Leveraging Artificial Intelligence to Expedite Antibody Design and Enhance Antibody–Antigen Interactions

计算机科学 领域(数学) 水准点(测量) 转化式学习 人工智能 资源(消歧) 数据科学 大地测量学 心理学 教育学 计算机网络 数学 纯数学 地理
作者
Doo Nam Kim,Andrew McNaughton,Neeraj Kumar
出处
期刊:Bioengineering [MDPI AG]
卷期号:11 (2): 185-185 被引量:6
标识
DOI:10.3390/bioengineering11020185
摘要

This perspective sheds light on the transformative impact of recent computational advancements in the field of protein therapeutics, with a particular focus on the design and development of antibodies. Cutting-edge computational methods have revolutionized our understanding of protein–protein interactions (PPIs), enhancing the efficacy of protein therapeutics in preclinical and clinical settings. Central to these advancements is the application of machine learning and deep learning, which offers unprecedented insights into the intricate mechanisms of PPIs and facilitates precise control over protein functions. Despite these advancements, the complex structural nuances of antibodies pose ongoing challenges in their design and optimization. Our review provides a comprehensive exploration of the latest deep learning approaches, including language models and diffusion techniques, and their role in surmounting these challenges. We also present a critical analysis of these methods, offering insights to drive further progress in this rapidly evolving field. The paper includes practical recommendations for the application of these computational techniques, supplemented with independent benchmark studies. These studies focus on key performance metrics such as accuracy and the ease of program execution, providing a valuable resource for researchers engaged in antibody design and development. Through this detailed perspective, we aim to contribute to the advancement of antibody design, equipping researchers with the tools and knowledge to navigate the complexities of this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Coolkid2001完成签到,获得积分10
2秒前
2秒前
科研狗的春天完成签到 ,获得积分10
4秒前
不加糖完成签到,获得积分10
4秒前
欣喜的薯片完成签到 ,获得积分10
4秒前
成功的强完成签到,获得积分10
6秒前
0109完成签到,获得积分10
6秒前
苗苗043完成签到,获得积分10
6秒前
是真的完成签到 ,获得积分10
7秒前
xiaoxue完成签到,获得积分10
7秒前
8秒前
9秒前
俞孤风完成签到,获得积分10
13秒前
小希完成签到 ,获得积分10
14秒前
lemon完成签到,获得积分10
15秒前
tt完成签到,获得积分10
16秒前
浮游应助小胖采纳,获得10
17秒前
蜀安应助wl采纳,获得30
18秒前
量子星尘发布了新的文献求助10
19秒前
火星上惜天完成签到 ,获得积分10
21秒前
zzzcxxx完成签到,获得积分10
21秒前
康康完成签到 ,获得积分10
24秒前
25秒前
浮游应助xiaoxue采纳,获得10
25秒前
纯真雁菱完成签到,获得积分10
25秒前
玛卡巴卡完成签到 ,获得积分10
26秒前
26秒前
dongkaimi完成签到,获得积分10
27秒前
苗佳威完成签到,获得积分10
27秒前
薛乎虚完成签到 ,获得积分10
27秒前
安静一曲完成签到 ,获得积分10
28秒前
不安莺完成签到,获得积分10
31秒前
祈雪发布了新的文献求助10
31秒前
谦让的含海完成签到,获得积分10
32秒前
TTTTREE发布了新的文献求助20
32秒前
33秒前
SciGPT应助科研通管家采纳,获得10
33秒前
华仔应助科研通管家采纳,获得10
33秒前
大个应助科研通管家采纳,获得10
33秒前
赘婿应助科研通管家采纳,获得30
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482706
求助须知:如何正确求助?哪些是违规求助? 4583446
关于积分的说明 14389578
捐赠科研通 4512683
什么是DOI,文献DOI怎么找? 2473180
邀请新用户注册赠送积分活动 1459251
关于科研通互助平台的介绍 1432861