Randomizing the human genome by engineering recombination between repeat elements

生物 遗传学 基因组 基因 重组酶 人类基因组 染色体外DNA 计算生物学 变色 DNA 重组 基因组不稳定性 DNA损伤
作者
Jonas Koeppel,Raphaël Ferreira,Thomas Vanderstichele,Lisa Maria Riedmayr,Elin Madli Peets,Gareth Girling,Juliane Weller,Fabio Liberante,Tom Ellis,George M. Church,Leopold Parts
标识
DOI:10.1101/2024.01.22.576745
摘要

Abstract While protein-coding genes are characterized increasingly well, 99% of the human genome is non-coding and poorly understood. This gap is due to a lack of tools for engineering variants that affect sequence to the necessary extent. To bridge this gap, we have developed a toolbox to create deletions, inversions, translocations, and extrachromosomal circular DNA at scale by highly multiplexed insertion of recombinase recognition sites into repetitive sequences with CRISPR prime editing. Using this strategy, we derived stable human cell lines with several thousand clonal insertions, the highest number of novel sequences inserted into single human genomes. Subsequent recombinase induction generated an average of more than one hundred megabase-sized rearrangements per cell, and thousands across the whole population. The ability to detect rearrangements as they are generated and to track their abundance over time allowed us to measure the selection pressures acting on different types of structural changes. We observed a consolidation towards shorter variants that preferentially delete growth-inhibiting genes and a depletion of translocations. We isolated and characterized 21 clones with multiple recombinase-induced rearrangements. These included viable haploid clones with deletions that span hundreds of kilobases as well as triploid HEK293T clones with aneuploidies and fold back chromosomes. We mapped the impact of these genetic changes on gene expression to decipher how structural variants affect gene regulation. The genome scrambling strategy developed here makes it possible to delete megabases of sequence, move sequences between and within chromosomes, and implant regulatory elements into new contexts which will shed light on the genome organization principles of humans and other species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助elever11采纳,获得10
3秒前
丘比特应助直率的花生采纳,获得10
4秒前
4秒前
平平无奇小垃圾完成签到,获得积分20
7秒前
9秒前
10秒前
Ashely发布了新的文献求助10
10秒前
nenoaowu发布了新的文献求助10
12秒前
七QI完成签到 ,获得积分10
12秒前
Mr.Bad关注了科研通微信公众号
15秒前
15秒前
15秒前
ss应助jianning采纳,获得10
17秒前
17秒前
薛乎虚完成签到 ,获得积分10
18秒前
cdercder应助nenoaowu采纳,获得10
20秒前
Orange应助www采纳,获得10
21秒前
脑洞疼应助Ricky采纳,获得10
21秒前
独特的尔风完成签到,获得积分10
25秒前
汉堡包应助柔之采纳,获得10
27秒前
Ashely完成签到,获得积分10
27秒前
Robin完成签到,获得积分10
28秒前
达克赛德完成签到 ,获得积分10
30秒前
酷波er应助forge采纳,获得10
30秒前
罗实完成签到 ,获得积分10
31秒前
33秒前
怕黑向秋完成签到,获得积分10
34秒前
Robin发布了新的文献求助10
37秒前
smin完成签到,获得积分10
37秒前
NexusExplorer应助无心的土豆采纳,获得10
39秒前
40秒前
40秒前
科研通AI5应助小天采纳,获得10
40秒前
45秒前
forge发布了新的文献求助10
47秒前
47秒前
huangJP完成签到,获得积分10
47秒前
故意的问安完成签到 ,获得积分10
48秒前
科研通AI2S应助等待盼雁采纳,获得10
48秒前
难过的达完成签到 ,获得积分10
48秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415