ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation

编码器 分割 计算机科学 人工智能 图像分割 深度学习 瓶颈 模式识别(心理学) 计算机视觉 嵌入式系统 操作系统
作者
W. Zhang,Shanxiong Chen,Yuqi Ma,Yü Liu,Xu Cao
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:171: 108005-108005 被引量:14
标识
DOI:10.1016/j.compbiomed.2024.108005
摘要

Medical image segmentation is a crucial topic in medical image processing. Accurately segmenting brain tumor regions from multimodal MRI scans is essential for clinical diagnosis and survival prediction. However, similar intensity distributions, variable tumor shapes, and fuzzy boundaries pose severe challenges for brain tumor segmentation. Traditional segmentation networks based on UNet struggle to establish explicit long-range dependencies from the feature space due to the limitations of the CNN receptive field. This is particularly crucial for dense prediction tasks such as brain tumor segmentation. Recent works have incorporated the powerful global modeling capability of Transformer into UNet to achieve more precise segmentation results. Nevertheless, these methods encounter some issues: (1) the global information is often modeled by simply stacking Transformer layers for a specific module, resulting in high computational complexity and underutilization of the potential of the UNet architecture; (2) the rich boundary information of tumor subregions in multi-scale features is often overlooked. Motivated by these challenges, we propose an advanced fusion of Transformer with UNet by reexamining the core three parts (encoder, bottleneck, and skip connections). Firstly, we introduce a CNN-Transformer module in the encoder to replace the traditional CNN module, enabling the capture of deep spatial dependencies from input images. To address high-level semantic information, we incorporate a computationally efficient spatial-channel attention layer in the bottleneck for global interaction, highlighting important semantic features from the encoder path output. For irregular lesions, we fuse the multi-scale features from the encoder output and the decoder features in the skip connections by calculating cross-attention. This adaptive querying of valuable information from multi-scale features enhances the boundary localization ability of the decoder path and suppresses redundant features with low correlation. Compared to existing methods, our model further enhances the learning capacity of the overall UNet architecture while maintaining low computational complexity. Experimental results on the BraTS2018 and BraTS2020 datasets for brain tumor segmentation tasks demonstrate that our model achieves comparable or superior results compared to recent CNN or Transformer-based models. The average DSC and HD95 on the two datasets are 0.854, 6.688, and 0.862, 5.455 respectively. At the same time, our model achieves optimal segmentation of Enhancing tumors, showcasing the effectiveness of our method. Our code will be made publicly available at https://github.com/wzhangck/ETUnet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助JYY采纳,获得10
1秒前
李昊泽发布了新的文献求助10
1秒前
Aoch完成签到,获得积分10
1秒前
三毛变相发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
carcar发布了新的文献求助10
3秒前
3秒前
风趣谷秋完成签到,获得积分20
3秒前
3秒前
3秒前
3秒前
慢慢发布了新的文献求助10
3秒前
4秒前
4秒前
kejun完成签到 ,获得积分10
4秒前
单复天发布了新的文献求助10
4秒前
kidult发布了新的文献求助10
5秒前
沐沐发布了新的文献求助10
5秒前
我是王浩腾我是健身王完成签到,获得积分20
5秒前
你眼带笑发布了新的文献求助10
5秒前
魁梧的映萱完成签到,获得积分10
6秒前
nicheng完成签到 ,获得积分0
6秒前
由由完成签到,获得积分10
6秒前
顺利毕业完成签到 ,获得积分10
6秒前
风趣谷秋发布了新的文献求助10
7秒前
xiaohua发布了新的文献求助10
7秒前
AK发布了新的文献求助10
7秒前
Tana发布了新的文献求助10
7秒前
7秒前
激流勇进的蜉蝣完成签到,获得积分10
8秒前
卷王完成签到,获得积分10
8秒前
8秒前
9秒前
lili完成签到,获得积分10
9秒前
又又发布了新的文献求助10
9秒前
CipherSage应助caulif采纳,获得10
9秒前
9秒前
chy完成签到,获得积分10
9秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816616
求助须知:如何正确求助?哪些是违规求助? 3359993
关于积分的说明 10406263
捐赠科研通 3078092
什么是DOI,文献DOI怎么找? 1690505
邀请新用户注册赠送积分活动 813815
科研通“疑难数据库(出版商)”最低求助积分说明 767871