已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Identifying victimization clusters across people with intellectual disabilities: A latent class analysis

潜在类模型 班级(哲学) 智力残疾 心理学 计算机科学 精神科 人工智能 机器学习
作者
Diego A. Díaz-Faes,Marta Codina,Noemí Pereda
出处
期刊:Disability and Health Journal [Elsevier BV]
卷期号:17 (2): 101573-101573 被引量:1
标识
DOI:10.1016/j.dhjo.2023.101573
摘要

Research has shown high rates of victimization among people with intellectual disabilities (ID), but victimization clusters have not been previously explored. We address the gap by examining how reported victimization experiences are grouped into different classes and identifying differences in the characteristics of the individuals in each class. We conducted a cross-sectional self-report study with a sample of adults with an ID diagnosis (n = 260). We gathered data about the participants' victimization experiences and socio-demographics, and then subjected the data to latent class analysis (LCA). Three different classes were detected: High victimization (n = 27, 10.4 %); medium victimization, low sexual (n = 97, 37.3 %); and low victimization (n = 136, 52.3 %). The results highlight the experiences of sexual and physical victimization among the high-victimization class, in which women are overrepresented, and physical victimization among the medium-victimization class. The study also found that experiences of assault and bias attacks occur to a varying extent across all three classes. The LCA and poly-victimization methods showed substantial agreement but also differences when identifying the most victimized participants. In addition, we detected significant differences between classes in gender, type of school attended, place of residence, legal incapacity, type of support needed, secondary disability and poly-victimization status. We detected distinct underlying ingroup patterns of victimization and sociodemographic inter-class differences that contribute to a better understanding of victimization within the population in question. The results have prevention and intervention implications for caregivers and providers of services for people with ID.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃铁完成签到,获得积分10
1秒前
Binbin完成签到 ,获得积分10
2秒前
7秒前
9秒前
12秒前
天天快乐应助淡淡夏伊采纳,获得10
12秒前
往复完成签到,获得积分10
12秒前
shenlee发布了新的文献求助10
13秒前
naitangkeke完成签到,获得积分10
14秒前
往复发布了新的文献求助10
16秒前
闪闪跳跳糖完成签到,获得积分10
17秒前
17秒前
桐桐应助asule采纳,获得10
18秒前
科研通AI5应助shenlee采纳,获得20
19秒前
儒雅HR完成签到,获得积分10
19秒前
奋斗寒天发布了新的文献求助50
20秒前
哈哈哈发布了新的文献求助10
22秒前
24秒前
greatsnow完成签到,获得积分10
26秒前
hwen1998完成签到 ,获得积分10
29秒前
shenlee完成签到,获得积分10
31秒前
吉祥高趙完成签到 ,获得积分10
32秒前
34秒前
38秒前
忧郁芒果发布了新的文献求助10
39秒前
一只A茂发布了新的文献求助10
39秒前
佐敦完成签到,获得积分10
39秒前
40秒前
慕青应助科研通管家采纳,获得10
41秒前
无曲应助科研通管家采纳,获得10
41秒前
爆米花应助科研通管家采纳,获得10
41秒前
miaomiao完成签到,获得积分20
42秒前
小马甲应助chen采纳,获得10
43秒前
杨晓柳发布了新的文献求助10
45秒前
小马甲应助gr采纳,获得10
49秒前
52秒前
杨晓柳完成签到,获得积分10
52秒前
矫健完成签到,获得积分10
53秒前
54秒前
忧郁芒果完成签到,获得积分10
54秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830345
求助须知:如何正确求助?哪些是违规求助? 3372772
关于积分的说明 10475011
捐赠科研通 3092498
什么是DOI,文献DOI怎么找? 1702090
邀请新用户注册赠送积分活动 818797
科研通“疑难数据库(出版商)”最低求助积分说明 771087