Machine learning-assisted shape morphing design for soft smart beam

有限元法 变形 人工神经网络 计算机科学 替代模型 粒子群优化 拉丁超立方体抽样 人工智能 机器学习 工程类 结构工程 数学 统计 蒙特卡罗方法
作者
Jiaxuan Ma,Tong‐Yi Zhang,Sheng Sun
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:267: 108957-108957 被引量:5
标识
DOI:10.1016/j.ijmecsci.2023.108957
摘要

Programming the shape of soft smart materials is a challenging task due to the enormous design space involved. In this study, we propose a novel approach to determine applied stimuli that enable the desired actuated shapes of soft smart materials. Our approach combines finite element methods (FEM), deep neural networks (DNN), and particle swarm optimization (PSO). By employing beams made of dielectric elastomer (DE) as models, we partition a DE beam into multiple actuating units, allowing independent actuation through the application of paired electrical stimuli. FEM is subsequently employed to compute the actuated shapes in response to various applied stimuli. The selection of these stimuli is accomplished through the utilization of Latin hypercube sampling. By utilizing the FEM-derived data, we have developed a machine learning (ML) surrogate model that integrates a long short-term memory (LSTM) network with a fully connected neural network (FCNN). Finally, PSO is employed to determine the optimal applied stimulus that yields the desired actuated shape. The LSTM-FCNN surrogate model is utilized to evaluate the fitness of PSO. The ML-PSO framework exhibits remarkable performance and efficiency in the context of the inverse design of soft smart beams.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助微笑的妙松采纳,获得10
1秒前
ming应助梨小7采纳,获得10
3秒前
小文完成签到 ,获得积分10
3秒前
哇哈完成签到 ,获得积分10
4秒前
小丽酱发布了新的文献求助10
4秒前
6秒前
法外狂徒唐老鸭完成签到 ,获得积分10
6秒前
遣词完成签到,获得积分20
8秒前
三只小熊发布了新的文献求助100
10秒前
冰海完成签到 ,获得积分10
12秒前
13秒前
Alex应助Lion Li采纳,获得30
13秒前
14秒前
16秒前
16秒前
JQ完成签到 ,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
景芫发布了新的文献求助30
18秒前
19秒前
19秒前
20秒前
Ava应助大壮采纳,获得10
20秒前
22秒前
难过以晴发布了新的文献求助20
22秒前
mou完成签到 ,获得积分10
22秒前
ding应助小杰杰采纳,获得10
22秒前
HDS发布了新的文献求助10
23秒前
张博洋发布了新的文献求助10
24秒前
老王发布了新的文献求助10
24秒前
24秒前
ZhouYW应助笨笨的琳采纳,获得10
25秒前
cowboy发布了新的文献求助10
26秒前
明亮的苡完成签到,获得积分20
26秒前
Xman完成签到,获得积分10
28秒前
景芫完成签到,获得积分10
28秒前
28秒前
28秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792120
求助须知:如何正确求助?哪些是违规求助? 3336378
关于积分的说明 10280558
捐赠科研通 3052977
什么是DOI,文献DOI怎么找? 1675435
邀请新用户注册赠送积分活动 803468
科研通“疑难数据库(出版商)”最低求助积分说明 761369