亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi- forword-step state of charge prediction for real-world electric vehicles battery systems using a novel LSTM-GRU hybrid neural network

荷电状态 电池(电) 人工神经网络 稳健性(进化) 卷积神经网络 计算机科学 电动汽车 航程(航空) 公制(单位) 工程类 人工智能 物理 功率(物理) 量子力学 基因 航空航天工程 化学 生物化学 运营管理
作者
Jichao Hong,Fengwei Liang,Haixu Yang,Chi Zhang,Xinyang Zhang,Huaqin Zhang,Wei Wang,Kerui Li,Jingsong Yang
出处
期刊:eTransportation [Elsevier]
卷期号:20: 100322-100322 被引量:68
标识
DOI:10.1016/j.etran.2024.100322
摘要

Battery state-of-charge (SOC) is an evaluation metric for the electric vehicles' remaining driving range and one of the main monitoring parameters for battery management systems. However, there are rarely data-driven studies on multi-step prediction of battery SOC, which cannot accurately provide and realize electric vehicle remaining driving range prediction and SOC safety pre-warning. Therefore, this study aims to perform SOC multi-forward-step prediction for real-world vehicle battery system by a novel hybrid long short-term memory and gate recurrent unit (LSTM-GRU) neural network. The paper firstly analyses the characteristics of correlation analysis and adopts similarity metric method to reduce the parameter dimensionality for the input neural network. Then the advantages between LSTM-GRU, LSTM, GRU, and long short-term memory and convolutional neural network (LSTM-CNN) are analyzed by comparing experimental and real-world vehicle data, and the effectiveness and accuracy of the proposed method is demonstrated. In addition, the proposed method robustness is verified by adding noise data to the input parameters. In this study, the prediction results were validated with real-world vehicle data in spring, summer, autumn and winter, and the proposed method achieved a minimum MAPE and MAE of 1.03% and 0.73 for summer conditions, while the minimum standard deviation of prediction was 0.06% for experimental conditions. The research process shows that the method has high accuracy when applied to large data and is expected to be applied to real-world vehicle battery system SOC multi-forward-step prediction in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
27秒前
夏日完成签到 ,获得积分10
32秒前
魏欣娜发布了新的文献求助10
32秒前
35秒前
46秒前
符寄云发布了新的文献求助10
51秒前
55秒前
55秒前
jeff完成签到,获得积分10
1分钟前
CC发布了新的文献求助20
1分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
酷波er应助yuxiazhengye采纳,获得10
1分钟前
魏欣娜发布了新的文献求助10
1分钟前
1分钟前
李爱国应助魏欣娜采纳,获得10
1分钟前
CC完成签到,获得积分10
1分钟前
1分钟前
2分钟前
ceeray23发布了新的文献求助30
2分钟前
2分钟前
2分钟前
2分钟前
yuxiazhengye发布了新的文献求助10
2分钟前
2分钟前
yuxiazhengye完成签到,获得积分10
2分钟前
烟花应助supermaltose采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
supermaltose发布了新的文献求助10
2分钟前
2分钟前
3分钟前
冰可乐真的好喝完成签到,获得积分10
3分钟前
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
嘻嘻哈哈应助科研通管家采纳,获得10
3分钟前
浮游应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482368
求助须知:如何正确求助?哪些是违规求助? 4583217
关于积分的说明 14388979
捐赠科研通 4512258
什么是DOI,文献DOI怎么找? 2472792
邀请新用户注册赠送积分活动 1459036
关于科研通互助平台的介绍 1432510