STADE-CDNet: Spatial–Temporal Attention With Difference Enhancement-Based Network for Remote Sensing Image Change Detection

遥感 变更检测 计算机科学 人工智能 图像分辨率 计算机视觉 模式识别(心理学) 地质学
作者
Zhi Li,Siying Cao,Jiakun Deng,Fengyi Wu,Wang Rui-lan,Junhai Luo,Zhenming Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:10
标识
DOI:10.1109/tgrs.2024.3367948
摘要

High-resolution remote sensing image change detection focuses on ground surface changes. It has wide applications, including territorial spatial planning, urban region detection, and military operations. However, class imbalance and pseudo-changes are caused by the unchanged areas far outnumbering the changed areas and lighting changes. To address these problems, we propose spatial-temporal attention with a difference enhancement-based network (STADE-CDNet). In STADE-CDNet, a change detection difference enhancement module (CDDM) is proposed to extract important features from the difference map to detect changed regions. This module enhances the network with differential feature attributes through the training layer, improving the network's learning ability and reducing the imbalance problem. A temporal memory module (TMM) is designed to extract temporal and spatial information. Inspired by the self-attention mechanism of the transformer, we propose a transformer and TMM (TTMM). Four encoding layers are designed to detect the semantic information from high to low levels of the multitemporal image pairs. The fusion and parallelism of multivariate data are achieved through collaborative modeling of deep learning and change detection, compensating for the need for excessive human intervention in traditional algorithms. We evaluate our approach in two different datasets (LEVIR-CD and DSIFN-CD). Promising quantitative and qualitative results show that STADE-CDNet can improve accuracy. In particular, the proposed CDDM significantly reduces false positive detection, with F1 scores at least 1.97% and 2.1% higher than other methods in the case of the LEVIR-CD and DSIFN-CD datasets, respectively. Our code is available at https://github.com/LiLisaZhi/STADE-CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EricSai完成签到,获得积分10
刚刚
窗外是蔚蓝色完成签到,获得积分0
刚刚
Helios完成签到,获得积分10
刚刚
xueshidaheng完成签到,获得积分0
1秒前
风信子完成签到,获得积分10
2秒前
桥豆麻袋完成签到,获得积分10
3秒前
木康薛完成签到,获得积分10
4秒前
吐司炸弹完成签到,获得积分10
5秒前
nanostu完成签到,获得积分10
5秒前
mayfly完成签到,获得积分10
5秒前
Brief完成签到,获得积分10
5秒前
余味应助科研通管家采纳,获得10
6秒前
cdercder应助科研通管家采纳,获得10
7秒前
儒雅的若翠完成签到,获得积分10
7秒前
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
cdercder应助科研通管家采纳,获得10
7秒前
Amikacin完成签到,获得积分10
7秒前
鹏举瞰冷雨完成签到,获得积分10
7秒前
NexusExplorer应助guoer采纳,获得10
10秒前
李友健完成签到 ,获得积分10
13秒前
14秒前
lili完成签到 ,获得积分10
14秒前
小琪完成签到 ,获得积分10
14秒前
Tina完成签到 ,获得积分10
15秒前
Omni发布了新的文献求助10
21秒前
wangwang完成签到 ,获得积分10
21秒前
guoer完成签到,获得积分10
22秒前
天明完成签到,获得积分10
22秒前
Ander完成签到 ,获得积分10
25秒前
gengfu完成签到,获得积分10
29秒前
景代丝完成签到,获得积分0
29秒前
青春完成签到,获得积分10
33秒前
宇文数学完成签到 ,获得积分10
36秒前
37秒前
慕青应助dungaway采纳,获得10
43秒前
五本笔记完成签到 ,获得积分10
44秒前
Stone发布了新的文献求助10
44秒前
Silence完成签到 ,获得积分10
45秒前
Echoheart发布了新的文献求助10
48秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800980
求助须知:如何正确求助?哪些是违规求助? 3346569
关于积分的说明 10329587
捐赠科研通 3063068
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726