STADE-CDNet: Spatial–Temporal Attention With Difference Enhancement-Based Network for Remote Sensing Image Change Detection

遥感 变更检测 计算机科学 人工智能 图像分辨率 计算机视觉 模式识别(心理学) 地质学
作者
Zhi Li,Siying Cao,Jiakun Deng,Fengyi Wu,Wang Rui-lan,Junhai Luo,Zhenming Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-17 被引量:31
标识
DOI:10.1109/tgrs.2024.3367948
摘要

High-resolution remote sensing image change detection focuses on ground surface changes. It has wide applications, including territorial spatial planning, urban region detection, and military operations. However, class imbalance and pseudo-changes are caused by the unchanged areas far outnumbering the changed areas and lighting changes. To address these problems, we propose spatial-temporal attention with a difference enhancement-based network (STADE-CDNet). In STADE-CDNet, a change detection difference enhancement module (CDDM) is proposed to extract important features from the difference map to detect changed regions. This module enhances the network with differential feature attributes through the training layer, improving the network's learning ability and reducing the imbalance problem. A temporal memory module (TMM) is designed to extract temporal and spatial information. Inspired by the self-attention mechanism of the transformer, we propose a transformer and TMM (TTMM). Four encoding layers are designed to detect the semantic information from high to low levels of the multitemporal image pairs. The fusion and parallelism of multivariate data are achieved through collaborative modeling of deep learning and change detection, compensating for the need for excessive human intervention in traditional algorithms. We evaluate our approach in two different datasets (LEVIR-CD and DSIFN-CD). Promising quantitative and qualitative results show that STADE-CDNet can improve accuracy. In particular, the proposed CDDM significantly reduces false positive detection, with F1 scores at least 1.97% and 2.1% higher than other methods in the case of the LEVIR-CD and DSIFN-CD datasets, respectively. Our code is available at https://github.com/LiLisaZhi/STADE-CDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火力全开完成签到,获得积分10
刚刚
yr完成签到,获得积分10
1秒前
2秒前
今后应助dong采纳,获得10
3秒前
夹心贝完成签到,获得积分10
3秒前
4秒前
5秒前
曈12完成签到 ,获得积分10
6秒前
6秒前
wennnnn完成签到,获得积分10
7秒前
slience发布了新的文献求助10
8秒前
标致香完成签到,获得积分10
10秒前
orixero应助wennnnn采纳,获得10
10秒前
文艺的冬日完成签到,获得积分10
11秒前
cookies12发布了新的文献求助10
11秒前
bu完成签到,获得积分10
12秒前
12秒前
ldy完成签到,获得积分10
16秒前
slience完成签到,获得积分10
17秒前
19秒前
cookies12完成签到,获得积分10
20秒前
22秒前
22秒前
爆米花应助wasailinlaomu采纳,获得10
24秒前
脑洞疼应助都美秋采纳,获得10
24秒前
26秒前
dong发布了新的文献求助10
26秒前
秀丽奎完成签到 ,获得积分10
26秒前
123456完成签到,获得积分10
27秒前
27秒前
量子星尘发布了新的文献求助10
28秒前
科研通AI2S应助xdc采纳,获得10
28秒前
隐形曼青应助xdc采纳,获得10
28秒前
SciGPT应助数星星采纳,获得10
29秒前
Slkled发布了新的文献求助10
32秒前
32秒前
32秒前
33秒前
1212发布了新的文献求助10
33秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742035
求助须知:如何正确求助?哪些是违规求助? 5405283
关于积分的说明 15343770
捐赠科研通 4883510
什么是DOI,文献DOI怎么找? 2625039
邀请新用户注册赠送积分活动 1573909
关于科研通互助平台的介绍 1530861