AdaPyramid: Adaptive Pyramid for Accelerating High-resolution Object Detection on Edge Devices

计算机科学 推论 延迟(音频) 人工智能 卷积神经网络 计算机视觉 帧(网络) 棱锥(几何) 帧速率 目标检测 低延迟(资本市场) 高分辨率 对象(语法) GSM演进的增强数据速率 边缘设备 模式识别(心理学) 云计算 电信 计算机网络 地质学 物理 光学 操作系统 遥感
作者
Xiaohang Shi,Sheng Zhang,Jie Wu,Ning Chen,Ke Cheng,Yu Liang,Sanglu Lu
出处
期刊:IEEE Transactions on Mobile Computing [Institute of Electrical and Electronics Engineers]
卷期号:23 (8): 8208-8224
标识
DOI:10.1109/tmc.2023.3343448
摘要

Deep convolutional neural network (NN)-based object detectors are not appropriate for straightforward inference on high-resolution videos at edge devices, as maintaining high accuracy often brings about prohibitively long latency. Although existing solutions have attempted to reduce on-device inference latency by selecting a cheaper configuration (e.g., choosing a more lightweight NN or scaling a frame to a smaller size before inference) or eliminating a background containing no object, they often ignore various high-resolution features and fail to optimize for those videos. We thus present AdaPyramid, a framework to reduce as much on-device inference latency as possible, especially for high-resolution videos, while achieving the accuracy demand approximately. We observe that the cheapest configuration to achieve the accuracy demand varies significantly across both different frames and different regions in a frame. The underlying reason is that object features (e.g., the location, size and category of objects) are more uneven in high-resolution videos, both temporally and spatially. Moreover, we observe that the object size presents a prominent hierarchical distribution in high-resolution frames. AdaPyramid thus partitions each frame hierarchically just like a pyramid and chooses a content-aware configuration for each region, which is adapted online based on the feedback. We evaluate the performance of AdaPyramid on a public dataset and our collected real-world videos. The obtained results show that under comparable accuracy to the state-of-the-art solutions, AdaPyramid can decrease inference latency by 40% on average, with up to 2.5× speed-up.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
典雅的人生应助lkl采纳,获得10
刚刚
刚刚
ZS-完成签到 ,获得积分10
1秒前
Jasper应助快乐的青梦采纳,获得10
2秒前
BK2008完成签到,获得积分10
4秒前
苏亚婷发布了新的文献求助10
4秒前
4秒前
5秒前
7秒前
友好若南发布了新的文献求助10
7秒前
77完成签到 ,获得积分10
7秒前
8秒前
8秒前
LUBBY发布了新的文献求助10
9秒前
11发布了新的文献求助10
11秒前
潇洒夜安完成签到,获得积分10
11秒前
11秒前
Peng丶Young完成签到,获得积分10
11秒前
13秒前
jingjing完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
wshwx发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
ira完成签到,获得积分10
15秒前
星辰大海应助哈哈采纳,获得30
16秒前
16秒前
慕青应助石石石采纳,获得10
16秒前
Jenny完成签到,获得积分10
16秒前
16秒前
明天见发布了新的文献求助10
17秒前
友好若南完成签到,获得积分10
17秒前
曾经如冬完成签到,获得积分10
18秒前
19秒前
linxi发布了新的文献求助10
19秒前
念辛发布了新的文献求助10
20秒前
一派倾城完成签到,获得积分10
20秒前
LNdOjk发布了新的文献求助10
20秒前
20秒前
xiaohe完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5825597
求助须知:如何正确求助?哪些是违规求助? 6011584
关于积分的说明 15567349
捐赠科研通 4946156
什么是DOI,文献DOI怎么找? 2664616
邀请新用户注册赠送积分活动 1610447
关于科研通互助平台的介绍 1565450