AdaPyramid: Adaptive Pyramid for Accelerating High-resolution Object Detection on Edge Devices

计算机科学 推论 延迟(音频) 人工智能 卷积神经网络 计算机视觉 帧(网络) 棱锥(几何) 帧速率 目标检测 低延迟(资本市场) 高分辨率 对象(语法) GSM演进的增强数据速率 边缘设备 模式识别(心理学) 云计算 电信 计算机网络 物理 遥感 光学 地质学 操作系统
作者
Xiaohang Shi,Sheng Zhang,Jie Wu,Ning Chen,Ke Cheng,Yu Liang,Sanglu Lu
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (8): 8208-8224
标识
DOI:10.1109/tmc.2023.3343448
摘要

Deep convolutional neural network (NN)-based object detectors are not appropriate for straightforward inference on high-resolution videos at edge devices, as maintaining high accuracy often brings about prohibitively long latency. Although existing solutions have attempted to reduce on-device inference latency by selecting a cheaper configuration (e.g., choosing a more lightweight NN or scaling a frame to a smaller size before inference) or eliminating a background containing no object, they often ignore various high-resolution features and fail to optimize for those videos. We thus present AdaPyramid, a framework to reduce as much on-device inference latency as possible, especially for high-resolution videos, while achieving the accuracy demand approximately. We observe that the cheapest configuration to achieve the accuracy demand varies significantly across both different frames and different regions in a frame. The underlying reason is that object features (e.g., the location, size and category of objects) are more uneven in high-resolution videos, both temporally and spatially. Moreover, we observe that the object size presents a prominent hierarchical distribution in high-resolution frames. AdaPyramid thus partitions each frame hierarchically just like a pyramid and chooses a content-aware configuration for each region, which is adapted online based on the feedback. We evaluate the performance of AdaPyramid on a public dataset and our collected real-world videos. The obtained results show that under comparable accuracy to the state-of-the-art solutions, AdaPyramid can decrease inference latency by 40% on average, with up to 2.5× speed-up.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅气冰珍发布了新的文献求助10
刚刚
大模型应助健忘的板凳采纳,获得10
1秒前
3秒前
领导范儿应助沉默的芒果采纳,获得10
3秒前
浮生发布了新的文献求助10
3秒前
蜗牛完成签到,获得积分10
4秒前
在水一方应助帅气冰珍采纳,获得10
4秒前
英姑应助帅帅中带点小坏采纳,获得10
5秒前
5秒前
乐乐应助bingsu108采纳,获得10
5秒前
Ava应助cumtxzs采纳,获得10
6秒前
远山笑你完成签到 ,获得积分10
7秒前
lianmeiliu发布了新的文献求助10
8秒前
8秒前
10秒前
adi完成签到,获得积分10
15秒前
16秒前
16秒前
16秒前
小W完成签到 ,获得积分10
17秒前
18秒前
19秒前
lqqqq发布了新的文献求助10
21秒前
22秒前
22秒前
bububusbu完成签到,获得积分10
24秒前
24秒前
25秒前
Hello应助谁家那小谁采纳,获得10
26秒前
啊哒吸哇完成签到,获得积分10
26秒前
黄青青完成签到,获得积分10
27秒前
最爱吃的柠檬酸完成签到,获得积分10
32秒前
赘婿应助刘杰青采纳,获得10
33秒前
34秒前
35秒前
36秒前
bobo完成签到,获得积分10
37秒前
浦老四完成签到,获得积分10
38秒前
38秒前
共享精神应助obaica采纳,获得10
38秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
《続天台宗全書・史伝1 天台大師伝注釈類》 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842878
求助须知:如何正确求助?哪些是违规求助? 3384881
关于积分的说明 10537922
捐赠科研通 3105474
什么是DOI,文献DOI怎么找? 1710326
邀请新用户注册赠送积分活动 823582
科研通“疑难数据库(出版商)”最低求助积分说明 774149