清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A weakly-supervised transformer-based hybrid network with multi-attention for pavement crack detection

计算机科学 卷积神经网络 人工智能 变压器 特征(语言学) 深度学习 工程类 语言学 电气工程 哲学 电压
作者
Zhenlin Wang,Zhufei Leng,Zhixin Zhang
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:411: 134134-134134 被引量:10
标识
DOI:10.1016/j.conbuildmat.2023.134134
摘要

At present, crack detection is of grand importance for the maintenance of infrastructure, one of which the most crucial kind in China is roads. Road safety accidents, which are mainly caused by cracks, have a significant influence on people's property, life security and the economic development of the society. Thus, it is essential to accurately identify the pavement defects and promptly repair them in order to prolong the lifespan of the road, minimize maintenance expenses, prevent further deterioration of the road and decrease the occurrence of hazards. In recent years, deep neural networks have achieved a huge degree of success in crack detection, resulting in substantial savings in terms of manpower, time and money when compared to conventional approaches. Nevertheless, owing to numerous difficulties, including time-consuming pixel annotation, inadequacy in acquiring information, discontinuous cracks and low-quality images, the detection of pavement defects remains a great challenge, still having some tricky issues demanding fabulous solutions. To this end, we propose a novel Weakly-Supervised hybrid network with multi-attention, termed CGTr-Net, for pavement crack detection. Aiming at alleviating the loss of information, behaving well in extracting both local and global features, the architecture of the backbone CG-Trans was designed. It is a combination of Convolutional Neural Network (CNN), which is expert in extracting local features but experiencing difficulties to capture global representations, and Gated axial Transformer, whose gated position-sensitive axial attention mechanism can efficiently extract long-distance feature dependencies but deteriorate in capturing local feature details. To enhance feature fusion between the Transformer Layer and the Convolution Layer, a feature fusion module (TCFF) was added to this network. The two feature maps obtained from Transformer and CNN are utilized to generate Grad-CAM. Subsequently, we use Conditional Random Field (CRF) to further refine the Grad-CAM and adapt Affinity from Attention (AFA), which learn semantic affinity from the Gated Axial Transformer and the Convolutional Neural Network, to produce more accurate pseudo labels. The proposed CGTr-Net is evaluated on two different crack segmentation datasets and our CGTr-Net achieves the highest scores of Recall (Re), F-score (F1) and the mean intersection-over-union (mIoU) on the two benchmark datasets, surpassing all the competitors in the experiment. These results demonstrate the robustness, effectiveness and the superiority of our CGTr-Net compared with existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cryscilla发布了新的文献求助10
3秒前
明理囧完成签到 ,获得积分10
15秒前
ramsey33完成签到 ,获得积分10
15秒前
18秒前
21秒前
柔弱友菱发布了新的文献求助10
24秒前
Bin_Liu发布了新的文献求助10
25秒前
xingsixs完成签到 ,获得积分10
36秒前
王佳豪完成签到,获得积分10
50秒前
L1完成签到 ,获得积分10
1分钟前
柔弱友菱发布了新的文献求助50
1分钟前
科研通AI5应助柔弱友菱采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
li完成签到 ,获得积分10
1分钟前
青出于蓝蔡完成签到,获得积分10
1分钟前
Hiram完成签到,获得积分10
1分钟前
1分钟前
1分钟前
xmjxmj217完成签到 ,获得积分10
1分钟前
专注青曼关注了科研通微信公众号
1分钟前
1分钟前
1分钟前
风秋千发布了新的文献求助10
2分钟前
蔡勇强完成签到 ,获得积分10
2分钟前
2分钟前
专注青曼发布了新的文献求助10
2分钟前
醉熏的千柳完成签到 ,获得积分10
2分钟前
weihe完成签到,获得积分10
2分钟前
在水一方应助风秋千采纳,获得30
2分钟前
2分钟前
偷得浮生半日闲完成签到 ,获得积分10
2分钟前
风秋千完成签到,获得积分10
2分钟前
2分钟前
ww完成签到,获得积分10
2分钟前
2分钟前
忧虑的安青完成签到,获得积分10
2分钟前
专注青曼完成签到,获得积分10
2分钟前
aniu完成签到,获得积分10
2分钟前
2分钟前
双眼皮跳蚤完成签到,获得积分10
3分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808143
求助须知:如何正确求助?哪些是违规求助? 3352745
关于积分的说明 10360281
捐赠科研通 3068758
什么是DOI,文献DOI怎么找? 1685251
邀请新用户注册赠送积分活动 810380
科研通“疑难数据库(出版商)”最低求助积分说明 766076