Transformer Meets GAN: Cloud-Free Multispectral Image Reconstruction via Multisensor Data Fusion in Satellite Images

计算机科学 多光谱图像 云计算 遥感 人工智能 计算机视觉 合成孔径雷达 基本事实 传感器融合 迭代重建 地质学 操作系统
作者
Congyu Li,Xinxin Liu,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:6
标识
DOI:10.1109/tgrs.2023.3326545
摘要

Cloud-free image reconstruction is of great significance for improving the quality of optical satellite images that are vulnerable to bad weather. When cloud cover makes it impossible to obtain information under the cloud, auxiliary data is indispensable to guide the reconstruction of the cloud-contaminated area. Additionally, the areas that require continuous observation are mostly regions with complex features, which puts higher demands on the restoration of texture, color, and other details in data reconstruction. In this paper, we propose a Transformer-based generative adversarial network for cloud-free multispectral image reconstruction via multi-sensor data fusion in satellite images (TransGAN-CFR). Synthetic Aperture Radar (SAR) images that are not affected by clouds are used as auxiliary data and paired with cloudy optical images into the GAN generator. To take advantage of the deep-shallow features and global-local geographical proximity in remote sensing images, the proposed generator employs a hierarchical Encoder-Decoder structure, in which the Transformer blocks adopt a non-overlapping window multi-head self-attention (WMSA) mechanism and a modified feed-forward network though depth-wise convolutions and the gating mechanism. Besides, we introduce a Triplet loss function specifically designed for cloud removal tasks to provide the generated cloud-less image with greater proximity to the ground truth. Compared with seven state-of-the-art deep learning-based cloud removal models, our network can yield more natural cloud-free images with better visual performance and more accurate results in quantitative evaluation on the SEN12MS-CR dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DrKe完成签到,获得积分10
刚刚
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
开心人达完成签到,获得积分20
2秒前
3秒前
4秒前
4秒前
5秒前
城浩完成签到,获得积分10
7秒前
斯文败类应助烂漫飞瑶采纳,获得10
7秒前
蛋挞发布了新的文献求助10
8秒前
10秒前
13秒前
xiong完成签到,获得积分10
13秒前
qqy完成签到,获得积分10
14秒前
http完成签到,获得积分20
14秒前
14秒前
grant完成签到,获得积分20
15秒前
香蕉觅云应助pampant采纳,获得10
15秒前
淡然的缘分完成签到,获得积分10
16秒前
16秒前
Zczzx完成签到,获得积分10
17秒前
17秒前
开心人达发布了新的文献求助30
17秒前
Hello应助yiling采纳,获得10
18秒前
http发布了新的文献求助20
18秒前
史迪仔发布了新的文献求助10
18秒前
19秒前
19秒前
zxer发布了新的文献求助10
19秒前
烂漫飞瑶发布了新的文献求助10
20秒前
科研通AI5应助grant采纳,获得10
20秒前
20秒前
20秒前
夏蓉完成签到,获得积分10
20秒前
hui完成签到,获得积分10
21秒前
44完成签到,获得积分20
22秒前
23秒前
爆米花应助房雍采纳,获得30
23秒前
23秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
协和专家大医说:医话肿瘤 400
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214