Transformer Meets GAN: Cloud-Free Multispectral Image Reconstruction via Multisensor Data Fusion in Satellite Images

计算机科学 多光谱图像 云计算 遥感 人工智能 计算机视觉 合成孔径雷达 基本事实 传感器融合 迭代重建 地质学 操作系统
作者
Congyu Li,Xinxin Liu,Shutao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13 被引量:6
标识
DOI:10.1109/tgrs.2023.3326545
摘要

Cloud-free image reconstruction is of great significance for improving the quality of optical satellite images that are vulnerable to bad weather. When cloud cover makes it impossible to obtain information under the cloud, auxiliary data is indispensable to guide the reconstruction of the cloud-contaminated area. Additionally, the areas that require continuous observation are mostly regions with complex features, which puts higher demands on the restoration of texture, color, and other details in data reconstruction. In this paper, we propose a Transformer-based generative adversarial network for cloud-free multispectral image reconstruction via multi-sensor data fusion in satellite images (TransGAN-CFR). Synthetic Aperture Radar (SAR) images that are not affected by clouds are used as auxiliary data and paired with cloudy optical images into the GAN generator. To take advantage of the deep-shallow features and global-local geographical proximity in remote sensing images, the proposed generator employs a hierarchical Encoder-Decoder structure, in which the Transformer blocks adopt a non-overlapping window multi-head self-attention (WMSA) mechanism and a modified feed-forward network though depth-wise convolutions and the gating mechanism. Besides, we introduce a Triplet loss function specifically designed for cloud removal tasks to provide the generated cloud-less image with greater proximity to the ground truth. Compared with seven state-of-the-art deep learning-based cloud removal models, our network can yield more natural cloud-free images with better visual performance and more accurate results in quantitative evaluation on the SEN12MS-CR dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoyuanbao1988完成签到,获得积分10
1秒前
Anna完成签到 ,获得积分10
2秒前
Tian完成签到,获得积分10
3秒前
科研助理完成签到 ,获得积分10
4秒前
Rain完成签到,获得积分10
5秒前
Murphy完成签到,获得积分10
6秒前
hecarli完成签到,获得积分0
10秒前
10秒前
奇迹发布了新的文献求助30
14秒前
15秒前
灵巧绮波完成签到 ,获得积分10
21秒前
丘比特应助笑寒采纳,获得10
25秒前
奇迹完成签到,获得积分10
28秒前
王宇琦完成签到 ,获得积分10
31秒前
嗯哼完成签到 ,获得积分10
31秒前
隐形曼青应助犹豫晓啸采纳,获得10
33秒前
34秒前
橘橘橘子皮完成签到 ,获得积分10
36秒前
陈子宇完成签到 ,获得积分10
36秒前
星河长明完成签到,获得积分10
36秒前
笑寒发布了新的文献求助10
37秒前
hhhhh完成签到 ,获得积分10
38秒前
41秒前
qyzhu完成签到,获得积分10
42秒前
hwq123完成签到,获得积分10
44秒前
犹豫晓啸发布了新的文献求助10
45秒前
bkagyin应助英俊珩采纳,获得10
45秒前
49秒前
49秒前
犹豫晓啸完成签到,获得积分10
51秒前
汕头凯奇完成签到,获得积分10
53秒前
H黄发布了新的文献求助10
53秒前
妮子要学习完成签到,获得积分10
56秒前
chi完成签到 ,获得积分10
57秒前
搞怪的又蓝完成签到,获得积分10
58秒前
过时的诗槐完成签到,获得积分10
1分钟前
Mason完成签到,获得积分10
1分钟前
老年学术废物完成签到 ,获得积分10
1分钟前
1分钟前
严乘风发布了新的文献求助10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851429
求助须知:如何正确求助?哪些是违规求助? 6269399
关于积分的说明 15626455
捐赠科研通 4967403
什么是DOI,文献DOI怎么找? 2678524
邀请新用户注册赠送积分活动 1622825
关于科研通互助平台的介绍 1579195