A real-time deep learning-based system for colorectal polyp size estimation by white-light endoscopy: development and multicenter prospective validation

医学 大肠息肉 内窥镜 一致性 虚拟大肠镜 结肠镜检查 结直肠癌 前瞻性队列研究 内窥镜检查 息肉切除术 人工智能 放射科 内科学 计算机科学 癌症
作者
Jing Wang,Ying Li,Shuyu Li,Honggang Yu,Boru Chen,Cheng Du,Fei Liao,Tao Tan,Qinghong Xu,Zhifeng Liu,Yuan Huang,Ci Zhu,Wenbing Cao,Liwen Yao,Zhifeng Wu,Lianlian Wu,Chenxia Zhang,Bing Xiao,Ming Xu,Jun Li
出处
期刊:Endoscopy [Thieme Medical Publishers (Germany)]
卷期号:56 (04): 260-270 被引量:12
标识
DOI:10.1055/a-2189-7036
摘要

Abstract Background The choice of polypectomy device and surveillance intervals for colorectal polyps are primarily decided by polyp size. We developed a deep learning-based system (ENDOANGEL-CPS) to estimate colorectal polyp size in real time. Methods ENDOANGEL-CPS calculates polyp size by estimating the distance from the endoscope lens to the polyp using the parameters of the lens. The depth estimator network was developed on 7297 images from five virtually produced colon videos and tested on 730 images from seven virtual colon videos. The performance of the system was first evaluated in nine videos of a simulated colon with polyps attached, then tested in 157 real-world prospective videos from three hospitals, with the outcomes compared with that of nine endoscopists over 69 videos. Inappropriate surveillance recommendations caused by incorrect estimation of polyp size were also analyzed. Results The relative error of depth estimation was 11.3% (SD 6.0%) in successive virtual colon images. The concordance correlation coefficients (CCCs) between system estimation and ground truth were 0.89 and 0.93 in images of a simulated colon and multicenter videos of 157 polyps. The mean CCC of ENDOANGEL-CPS surpassed all endoscopists (0.89 vs. 0.41 [SD 0.29]; P<0.001). The relative accuracy of ENDOANGEL-CPS was significantly higher than that of endoscopists (89.9% vs. 54.7%; P<0.001). Regarding inappropriate surveillance recommendations, the system's error rate is also lower than that of endoscopists (1.5% vs. 16.6%; P<0.001). Conclusions ENDOANGEL-CPS could potentially improve the accuracy of colorectal polyp size measurements and size-based surveillance intervals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车安萱完成签到,获得积分10
2秒前
鸡蛋灌饼与掉渣饼完成签到,获得积分10
2秒前
3秒前
ddd完成签到 ,获得积分10
5秒前
清清佑佑发布了新的文献求助10
9秒前
田様应助AlwaysKim采纳,获得10
11秒前
11秒前
霸气安蕾发布了新的文献求助10
15秒前
唯梦完成签到 ,获得积分10
15秒前
16秒前
1111完成签到,获得积分10
16秒前
万能图书馆应助Du采纳,获得10
20秒前
whl发布了新的文献求助10
21秒前
22秒前
xifeng完成签到 ,获得积分10
24秒前
65556发布了新的文献求助10
26秒前
33秒前
35秒前
翟煜发布了新的文献求助10
36秒前
Lu完成签到 ,获得积分10
39秒前
cun完成签到,获得积分10
40秒前
垚垚发布了新的文献求助10
40秒前
iNk应助wodetaiyangLLL采纳,获得10
44秒前
田様应助应应采纳,获得10
45秒前
秋山伊夫完成签到,获得积分10
46秒前
gzj完成签到,获得积分10
46秒前
三水完成签到,获得积分10
50秒前
华仔应助zbb采纳,获得10
51秒前
51秒前
李健应助科研通管家采纳,获得10
54秒前
汉堡包应助科研通管家采纳,获得10
54秒前
55秒前
科研通AI5应助南风知我意采纳,获得10
55秒前
57秒前
小二郎应助唐唐采纳,获得10
59秒前
许钟一完成签到,获得积分10
1分钟前
1分钟前
Du发布了新的文献求助10
1分钟前
1分钟前
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783222
求助须知:如何正确求助?哪些是违规求助? 3328565
关于积分的说明 10236984
捐赠科研通 3043669
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759126