Printed Circuit Board Defect Image Recognition Based on the Multimodel Fusion Algorithm

灵敏度(控制系统) 人工智能 计算机科学 融合 卷积神经网络 工作量 网络模型 人工神经网络 模式识别(心理学) 重新使用 图像融合 特征(语言学) 算法 图像(数学) 计算机视觉 工程类 电子工程 哲学 语言学 废物管理 操作系统
作者
Jiantao Zhang,Zhengfang Chang,Haida Xu,Dong Qu,Xinyu Shi
出处
期刊:Journal of Electronic Packaging [ASM International]
卷期号:146 (2)
标识
DOI:10.1115/1.4064098
摘要

Abstract Printed Circuit Board (PCB) is one of the most important components of electronic products. But the traditional defect detection methods are gradually difficult to meet the requirements of PCB defect detection. The research on PCB defect recognition method based on convolutional neural network is the current trend. The PCB defect image recognition based on DenseNet169 network model is studied in this paper. In order to reduce the omission of PCB defects in actual detection, it is necessary to further improve the sensitivity of the model. Therefore, a classification model based on the multimodel fusion of the DenseNet169 model and the ResNet50 model is proposed. At the same time, the network structure after multimodel fusion is improved. The improved multimodel fusion model Mix-Fusion enables the network to not only retain the recognition accuracy of the ResNet50 model for NG defects and small defect images but also improve the overall recognition accuracy through the feature reuse and bypass settings of the DenseNet169 model. The experimental results show that when the threshold is 0.5, the sensitivity of the improved multimodel fusion network can reach 99.2%, and the specificity is 99.5%. The sensitivity of Mix-Fusion is 1.2% higher than that of DenseNet169. High sensitivity means fewer missed NG images, and high specificity means less workload for employees. The improved model improves sensitivity and maintains high specificity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CNAxiaozhu7应助王王采纳,获得10
2秒前
2秒前
Inwhite完成签到,获得积分10
3秒前
烟花应助摩根采纳,获得10
6秒前
CipherSage应助夏青荷采纳,获得10
6秒前
6秒前
无奈的丹彤完成签到,获得积分10
7秒前
8秒前
xxh完成签到,获得积分10
8秒前
所所应助如意草丛采纳,获得10
9秒前
FashionBoy应助lnn采纳,获得10
10秒前
小谢完成签到,获得积分10
12秒前
李健应助逗逗采纳,获得10
12秒前
qi发布了新的文献求助10
12秒前
12秒前
13秒前
15秒前
15秒前
宁annie完成签到,获得积分10
18秒前
19秒前
19秒前
任老师发布了新的文献求助10
20秒前
如意草丛发布了新的文献求助10
20秒前
终成完成签到,获得积分10
23秒前
grumpysquirel发布了新的文献求助10
23秒前
颜色发布了新的文献求助10
24秒前
24秒前
LaTeXer应助东东呀采纳,获得60
25秒前
25秒前
112完成签到,获得积分10
26秒前
魏董凡990503完成签到 ,获得积分10
26秒前
树叶有专攻完成签到,获得积分10
27秒前
思源应助QianShenYu采纳,获得10
28秒前
grumpysquirel完成签到,获得积分10
30秒前
养猪大户完成签到 ,获得积分10
31秒前
平淡惋清完成签到,获得积分10
31秒前
张张张完成签到,获得积分10
32秒前
lnn发布了新的文献求助10
32秒前
34秒前
天天喝咖啡完成签到,获得积分10
36秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799399
求助须知:如何正确求助?哪些是违规求助? 3345013
关于积分的说明 10322837
捐赠科研通 3061463
什么是DOI,文献DOI怎么找? 1680341
邀请新用户注册赠送积分活动 807049
科研通“疑难数据库(出版商)”最低求助积分说明 763462