清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Pixel-level regression for UAV hyperspectral images: Deep learning-based quantitative inverse of wheat stripe rust disease index

高光谱成像 像素 人工智能 回归 遥感 计算机科学 回归分析 分割 深度学习 机器学习 模式识别(心理学) 数学 统计 地理
作者
Jie Deng,Xunhe Zhang,Ziqian Yang,Congying Zhou,Rui Wang,Kai Zhang,Xuan Lv,Lujia Yang,Zhifang Wang,Pengju Li,Zhanhong Ma
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:215: 108434-108434 被引量:28
标识
DOI:10.1016/j.compag.2023.108434
摘要

Previous research on utilizing unmanned aerial vehicle (UAV) remote sensing imagery for plant disease detection has predominantly focused on the qualitative identification of healthy and infected plants. Notably, pixel-level regression analysis for the quantification of the wheat stripe rust disease index (DI) using hyperspectral imaging data and deep learning methods is still lacking. Traditionally, quantitative inversion has been achieved by employing radiative transfer model inversion techniques or a combination of vegetation indices and machine learning methodologies. This investigation presents an end-to-end, pixel-level quantitative regression methodology, underpinned by deep learning techniques. This methodology carries substantial importance not only for the accurate assessment of disease distribution maps, but also for an array of common quantitative regression challenges within agricultural systems. For example, the approach can be utilized for the regression inversion of continuous phenotypes, including crop yield and plant height. In this study, 1,560 local wheat varieties (lines) from Henan Province were selected as experimental subjects, resulting in a wide-ranging gradient of DI. Hyperspectral images at a height of 100 m were obtained based on UAVs at different stages of infection. This work utilized a deep learning semantic segmentation method with continuous loss functions such as Laplacian loss to achieve pixel-level regression and end-to-end quantitative inversion of the DI. The performance of models with different loss functions, model architectures and datasets was compared. The optimal results were achieved using the Laplacian + MSE loss function combined with the HRNet_W18 algorithm model, yielding a test set R2 value of 0.875 and an MSE of 0.0129. Incorporating a PSA module further improved the outcomes, resulting in an R2 value of 0.880 and an MSE of 0.0123. Modeling with a limited number of feature indices (e.g., six feature indices) reduced the model recognition performance to 0.829 compared to full-band modeling. These findings suggest that full-band, end-to-end modeling based on deep learning algorithms can lead to superior inversion outcomes and streamline data analysis steps. The insights from this research hold relevance for high-throughput crop phenotyping, plant disease and pest monitoring, and quantitative yield assessment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
fufufu123完成签到 ,获得积分10
12秒前
英喆完成签到 ,获得积分10
15秒前
或无情完成签到 ,获得积分10
18秒前
如泣草芥完成签到,获得积分0
29秒前
53秒前
1分钟前
1分钟前
5433完成签到 ,获得积分10
1分钟前
fei完成签到 ,获得积分10
2分钟前
wayne完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
潘潘发布了新的文献求助10
2分钟前
SarahG发布了新的文献求助10
2分钟前
2分钟前
3分钟前
Xiaoqiang发布了新的文献求助10
3分钟前
3分钟前
我是老大应助Xiaoqiang采纳,获得10
3分钟前
3分钟前
Xiaoqiang完成签到,获得积分10
3分钟前
4分钟前
跳跃太清完成签到 ,获得积分10
4分钟前
hani完成签到,获得积分10
5分钟前
jlwang完成签到,获得积分10
5分钟前
六一完成签到 ,获得积分10
5分钟前
5分钟前
一盏壶完成签到,获得积分10
5分钟前
6分钟前
JAMIN完成签到,获得积分20
6分钟前
JAMIN发布了新的文献求助10
6分钟前
6分钟前
粗心的飞槐完成签到 ,获得积分10
7分钟前
靓丽的熠彤完成签到,获得积分10
7分钟前
劉浏琉完成签到,获得积分10
7分钟前
7分钟前
7分钟前
蜉蝣应助jdj采纳,获得10
7分钟前
青出于蓝蔡完成签到,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4514151
求助须知:如何正确求助?哪些是违规求助? 3959090
关于积分的说明 12270960
捐赠科研通 3620832
什么是DOI,文献DOI怎么找? 1992656
邀请新用户注册赠送积分活动 1028995
科研通“疑难数据库(出版商)”最低求助积分说明 920055