Task Placement and Resource Allocation for Edge Machine Learning: A GNN-Based Multi-Agent Reinforcement Learning Paradigm

计算机科学 强化学习 调度(生产过程) 人工智能 机器学习 作业车间调度 任务(项目管理) 分布式计算 数学优化 计算机网络 数学 布线(电子设计自动化) 经济 管理
作者
Yihong Li,Xiaoxi Zhang,Tianyu Zeng,Jingpu Duan,Chuan Wu,Di Wu,Xu Chen
出处
期刊:IEEE Transactions on Parallel and Distributed Systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (12): 3073-3089 被引量:12
标识
DOI:10.1109/tpds.2023.3313779
摘要

Machine learning (ML) tasks are one of the major workloads in today's edge computing networks. Existing edge-cloud schedulers allocate the requested amounts of resources to each task, falling short of best utilizing the limited edge resources for ML tasks. This paper proposes TapFinger , a distributed scheduler for edge clusters that minimizes the total completion time of ML tasks through co-optimizing task placement and fine-grained multi-resource allocation. To learn the tasks' uncertain resource sensitivity and enable distributed scheduling, we adopt multi-agent reinforcement learning (MARL) and propose several techniques to make it efficient, including a heterogeneous graph attention network as the MARL backbone, a tailored task selection phase in the actor network, and the integration of Bayes' theorem and masking schemes. We first implement a single-task scheduling version, which schedules at most one task each time. Then we generalize to the multi-task scheduling case, in which a sequence of tasks is scheduled simultaneously. Our design can mitigate the expanded decision space and yield fast convergence to optimal scheduling solutions. Extensive experiments using synthetic and test-bed ML task traces show that TapFinger can achieve up to 54.9% reduction in the average task completion time and improve resource efficiency as compared to state-of-the-art schedulers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研助手6应助开朗青旋采纳,获得10
刚刚
kevin完成签到,获得积分10
刚刚
可爱的函函应助文昊采纳,获得30
刚刚
田様应助HHH采纳,获得10
1秒前
1秒前
redtom完成签到,获得积分10
1秒前
1秒前
fuyuhaoy完成签到,获得积分10
2秒前
阔达的金鱼完成签到,获得积分10
2秒前
2秒前
传奇3应助科研通管家采纳,获得30
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
3秒前
后来应助科研通管家采纳,获得10
3秒前
3秒前
bin发布了新的文献求助30
3秒前
椋鸟应助科研通管家采纳,获得10
3秒前
Esperanza完成签到,获得积分10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
英姑应助科研通管家采纳,获得30
3秒前
jzy完成签到,获得积分10
4秒前
大个应助科研通管家采纳,获得10
4秒前
石榴发布了新的文献求助10
4秒前
烟花应助科研通管家采纳,获得10
4秒前
科研通AI5应助静鸭采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
利物鸟贝拉完成签到,获得积分10
4秒前
Jasper应助科研通管家采纳,获得10
4秒前
Wayne发布了新的文献求助10
5秒前
充电宝应助科研通管家采纳,获得10
5秒前
佳佳发布了新的文献求助20
5秒前
卡布完成签到,获得积分10
5秒前
NexusExplorer应助科研通管家采纳,获得30
5秒前
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
6秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812149
求助须知:如何正确求助?哪些是违规求助? 3356590
关于积分的说明 10382821
捐赠科研通 3073708
什么是DOI,文献DOI怎么找? 1688425
邀请新用户注册赠送积分活动 812137
科研通“疑难数据库(出版商)”最低求助积分说明 766960