A deep learning framework for identifying Alzheimer's disease using fMRI-based brain network

功能连接 神经科学 疾病 深度学习 默认模式网络 心理学 人工智能 计算机科学 医学 内科学
作者
Ruofan Wang,Qiguang He,Chunxiao Han,Haodong Wang,Lianshuan Shi,Yanqiu Che
出处
期刊:Frontiers in Neuroscience [Frontiers Media]
卷期号:17 被引量:4
标识
DOI:10.3389/fnins.2023.1177424
摘要

The convolutional neural network (CNN) is a mainstream deep learning (DL) algorithm, and it has gained great fame in solving problems from clinical examination and diagnosis, such as Alzheimer's disease (AD). AD is a degenerative disease difficult to clinical diagnosis due to its unclear underlying pathological mechanism. Previous studies have primarily focused on investigating structural abnormalities in the brain's functional networks related to the AD or proposing different deep learning approaches for AD classification.The aim of this study is to leverage the advantages of combining brain topological features extracted from functional network exploration and deep features extracted by the CNN. We establish a novel fMRI-based classification framework that utilizes Resting-state functional magnetic resonance imaging (rs-fMRI) with the phase synchronization index (PSI) and 2D-CNN to detect abnormal brain functional connectivity in AD.First, PSI was applied to construct the brain network by region of interest (ROI) signals obtained from data preprocessing stage, and eight topological features were extracted. Subsequently, the 2D-CNN was applied to the PSI matrix to explore the local and global patterns of the network connectivity by extracting eight deep features from the 2D-CNN convolutional layer.Finally, classification analysis was carried out on the combined PSI and 2D-CNN methods to recognize AD by using support vector machine (SVM) with 5-fold cross-validation strategy. It was found that the classification accuracy of combined method achieved 98.869%.These findings show that our framework can adaptively combine the best brain network features to explore network synchronization, functional connections, and characterize brain functional abnormalities, which could effectively detect AD anomalies by the extracted features that may provide new insights into exploring the underlying pathogenesis of AD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
英姑应助wangwenzhe采纳,获得10
2秒前
蕾蕾发布了新的文献求助10
3秒前
3秒前
5秒前
左丘忻发布了新的文献求助10
9秒前
核桃应助已经没有海星了采纳,获得10
10秒前
传奇3应助guo采纳,获得10
11秒前
华仔应助蕾蕾采纳,获得30
11秒前
云烟成雨完成签到,获得积分10
11秒前
12秒前
13秒前
Dawn发布了新的文献求助60
13秒前
15秒前
cugwzr发布了新的文献求助10
17秒前
amio发布了新的文献求助10
17秒前
qiuke关注了科研通微信公众号
17秒前
18秒前
wonder123发布了新的文献求助10
20秒前
小乐发布了新的文献求助10
21秒前
五十不同发布了新的文献求助10
23秒前
spujo应助清风采纳,获得10
24秒前
27秒前
小凡完成签到,获得积分10
27秒前
在水一方应助勤恳的红酒采纳,获得10
28秒前
learn发布了新的文献求助10
31秒前
斯文败类应助Fan采纳,获得10
33秒前
潘潘完成签到,获得积分10
33秒前
烟花应助喂喂采纳,获得10
34秒前
35秒前
一一发布了新的文献求助10
36秒前
36秒前
38秒前
38秒前
39秒前
勤恳的红酒完成签到,获得积分10
39秒前
houfengyun328完成签到,获得积分20
39秒前
佳丽完成签到,获得积分10
40秒前
40秒前
41秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787805
求助须知:如何正确求助?哪些是违规求助? 3333381
关于积分的说明 10261608
捐赠科研通 3049094
什么是DOI,文献DOI怎么找? 1673414
邀请新用户注册赠送积分活动 801906
科研通“疑难数据库(出版商)”最低求助积分说明 760419