清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A deep learning framework for identifying Alzheimer's disease using fMRI-based brain network

功能连接 神经科学 疾病 深度学习 默认模式网络 心理学 人工智能 计算机科学 医学 内科学
作者
Ruofan Wang,Qiguang He,Chunxiao Han,Haodong Wang,Lianshuan Shi,Yanqiu Che
出处
期刊:Frontiers in Neuroscience [Frontiers Media SA]
卷期号:17: 1177424-1177424 被引量:19
标识
DOI:10.3389/fnins.2023.1177424
摘要

Background The convolutional neural network (CNN) is a mainstream deep learning (DL) algorithm, and it has gained great fame in solving problems from clinical examination and diagnosis, such as Alzheimer's disease (AD). AD is a degenerative disease difficult to clinical diagnosis due to its unclear underlying pathological mechanism. Previous studies have primarily focused on investigating structural abnormalities in the brain's functional networks related to the AD or proposing different deep learning approaches for AD classification. Objective The aim of this study is to leverage the advantages of combining brain topological features extracted from functional network exploration and deep features extracted by the CNN. We establish a novel fMRI-based classification framework that utilizes Resting-state functional magnetic resonance imaging (rs-fMRI) with the phase synchronization index (PSI) and 2D-CNN to detect abnormal brain functional connectivity in AD. Methods First, PSI was applied to construct the brain network by region of interest (ROI) signals obtained from data preprocessing stage, and eight topological features were extracted. Subsequently, the 2D-CNN was applied to the PSI matrix to explore the local and global patterns of the network connectivity by extracting eight deep features from the 2D-CNN convolutional layer. Results Finally, classification analysis was carried out on the combined PSI and 2D-CNN methods to recognize AD by using support vector machine (SVM) with 5-fold cross-validation strategy. It was found that the classification accuracy of combined method achieved 98.869%. Conclusion These findings show that our framework can adaptively combine the best brain network features to explore network synchronization, functional connections, and characterize brain functional abnormalities, which could effectively detect AD anomalies by the extracted features that may provide new insights into exploring the underlying pathogenesis of AD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nxw2xL完成签到,获得积分10
17秒前
21秒前
数乱了梨花完成签到 ,获得积分0
27秒前
29秒前
搜集达人应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
矜持完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
无辜眼神发布了新的文献求助10
1分钟前
attention完成签到,获得积分10
1分钟前
2分钟前
英俊的铭应助连翘采纳,获得10
2分钟前
斯文败类应助无辜眼神采纳,获得10
2分钟前
2分钟前
如歌完成签到,获得积分10
2分钟前
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
纯真的柔发布了新的文献求助10
3分钟前
纯真的柔完成签到,获得积分20
3分钟前
3分钟前
4分钟前
liaomr完成签到 ,获得积分10
4分钟前
4分钟前
小韩同学完成签到 ,获得积分10
4分钟前
4分钟前
蝎子莱莱xth完成签到,获得积分10
4分钟前
无辜眼神发布了新的文献求助10
4分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
4分钟前
Square完成签到,获得积分10
4分钟前
无花果应助无辜眼神采纳,获得10
4分钟前
Derrick完成签到,获得积分10
4分钟前
guo发布了新的文献求助10
5分钟前
5分钟前
5分钟前
twk发布了新的文献求助80
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 6000
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
A retrospective multi-center chart review study on the timely administration of systemic corticosteroids in children with moderate-to-severe asthma exacerbations 510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5676811
求助须知:如何正确求助?哪些是违规求助? 4964927
关于积分的说明 15158793
捐赠科研通 4836441
什么是DOI,文献DOI怎么找? 2590972
邀请新用户注册赠送积分活动 1544488
关于科研通互助平台的介绍 1502372