An optimized denoising method for ICESat-2 photon-counting data considering heterogeneous density and weak connectivity

降噪 遥感 计算机科学 离群值 光子计数 模式识别(心理学) 仰角(弹道) 人工智能 光子 数学 光学 物理 地质学 几何学
作者
Guoan Huang,Zhipeng Dong,Yanxiong Liu,Yilan Chen,Jie Li,Yanhong Wang,Wenjun Meng
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:31 (25): 41496-41496 被引量:4
标识
DOI:10.1364/oe.502934
摘要

The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) can obtain underwater elevation due to its strong penetration ability. However, the photons recorded by ICESat-2 include a large amount of noise that needs to be removed. Although density-based clustering methods can finish signal photon extraction, heterogeneous density and weak connectivity in photon data distribution impede their denoising performance, especially for sparse signals in deep water and drastic topographic change areas. In this paper, a novel fused denoising method based on the local outlier factor and inverse distance metric is proposed to overcome the above problems. The local outlier factor and inverse distance metric are calculated based on K-nearest neighbors (KNNs), taking into account not only the difference in density but also the directional uniformity of the data distribution. Using six trajectories under various seabed topographies, the proposed method is compared with state-of-the-art ICESat-2 photon denoising algorithms and official ATL03 results. The results indicate that the overall accuracy of the proposed method can surpass 96%, and the proposed method maintains higher recall but also has a lower false positive rate. Compared with the results of other methods, the proposed method can better adopt areas with abrupt topographic changes and deep water. The extracted signal strips are more unbroken and continuous. This study can contribute to pioneering a new perspective for ICESat-2 photon-counting data denoising research that is limited to using only density-based algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助干冷安采纳,获得10
刚刚
情怀应助合适芹菜采纳,获得10
1秒前
传奇3应助落叶风铃采纳,获得10
1秒前
科研通AI2S应助zhan采纳,获得10
2秒前
ylr发布了新的文献求助10
2秒前
2秒前
1022061620发布了新的文献求助10
3秒前
Natua完成签到,获得积分10
3秒前
chenjingying发布了新的文献求助10
4秒前
5秒前
科研通AI5应助juan采纳,获得50
5秒前
科研通AI5应助yiliu0111487采纳,获得10
6秒前
sfjww发布了新的文献求助10
7秒前
8秒前
星辰大海应助木火采纳,获得10
8秒前
欢快的芹菜完成签到,获得积分10
8秒前
8秒前
662澜关注了科研通微信公众号
9秒前
安静元槐完成签到,获得积分20
9秒前
123456完成签到 ,获得积分20
9秒前
快乐茗完成签到,获得积分10
9秒前
11秒前
11秒前
yitiaoyezi发布了新的文献求助10
11秒前
12秒前
落叶风铃完成签到,获得积分10
12秒前
13秒前
JACK完成签到,获得积分10
13秒前
长情忆秋完成签到,获得积分10
13秒前
Jaydonnn完成签到 ,获得积分10
13秒前
CodeCraft应助墨尔根戴青采纳,获得10
13秒前
Ava应助zing采纳,获得30
14秒前
14秒前
CipherSage应助完美时间线采纳,获得10
14秒前
15秒前
16秒前
xaaaa发布了新的文献求助30
16秒前
落叶风铃发布了新的文献求助10
17秒前
sfjww完成签到,获得积分10
17秒前
1111发布了新的文献求助10
17秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Dynamic Programming and Optimal Control 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830036
求助须知:如何正确求助?哪些是违规求助? 3372542
关于积分的说明 10473141
捐赠科研通 3092138
什么是DOI,文献DOI怎么找? 1701823
邀请新用户注册赠送积分活动 818638
科研通“疑难数据库(出版商)”最低求助积分说明 770986