已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Multistage Deep Learning Network for Trace Explosive Residues Detection in SERS Chips

爆炸物 均方误差 计算机科学 残余物 深度学习 人工神经网络 模式识别(心理学) 人工智能 数据挖掘 算法 数学 统计 化学 有机化学
作者
Feng Zhang,Jianchun Yang,Xinyu Zhang,Shuaiwu Su,Jiayang Luo,Jiahao Li,Xueming Li
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (24): 31493-31505 被引量:1
标识
DOI:10.1109/jsen.2023.3330509
摘要

To address the challenges of relying on specialized personnel and incurring significant time costs in qualitative and quantitative analysis using surface-enhanced Raman scattering (SERS) technology for explosive residue detection, this article proposes a detection method for explosive residues based on a multistage deep learning network and SERS chip. To improve the qualitative analysis performance of the SERS spectrum, a novel fusion attention module-based residual neural (FAB-ResNet) is constructed through the integration of a modified attention mechanism into the ResNet network. In addition, for proper processing of long sequential data, the nested long short-term memory (NLSTM) network is selected for quantitative analysis with its powerful global information aggregating capability. Consequently, the NLSTM is incorporated into FAB-ResNet to construct a multistage hybrid network. Extensive experiments are carried out to prove the effectiveness of the proposed hybrid network. The qualitative results demonstrated the superiority of the proposed FAB-ResNet with its outstanding classification accuracy (100%). Meanwhile, by comparing quantitative results, the NLSTM network provides promising performance ( ${R} ^{{2}}$ = 0.9835, root mean square error (RMSE) = 0.1653, mean absolute error (MAE) = 0.0916, and mean absolute relative error (MARE) = 2.7488%). Furthermore, the comparative results among other state-of-the-art networks confirmed the effectiveness of the proposed method as a means of explosive residue detection and analysis, which shows the potential for further application of SERS technology in explosive site detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
moon发布了新的文献求助10
2秒前
上蹿下跳的猹完成签到,获得积分10
4秒前
lwm不想看文献完成签到 ,获得积分10
8秒前
jiaobu完成签到,获得积分20
9秒前
Kashing完成签到,获得积分10
10秒前
小张吃不胖完成签到 ,获得积分10
15秒前
xx完成签到 ,获得积分10
16秒前
领导范儿应助辛勤的乐曲采纳,获得10
22秒前
27秒前
27秒前
科研通AI5应助Q123ba叭采纳,获得10
28秒前
31秒前
32秒前
shaylie完成签到 ,获得积分10
33秒前
33秒前
33秒前
zhhhh发布了新的文献求助10
33秒前
36秒前
mingtian完成签到,获得积分10
36秒前
科研狗发布了新的文献求助10
36秒前
38秒前
Q123ba叭完成签到,获得积分10
38秒前
39秒前
ldykkkkk完成签到,获得积分10
41秒前
41秒前
41秒前
Q123ba叭发布了新的文献求助10
42秒前
42秒前
吴嘉俊完成签到 ,获得积分10
44秒前
andrele发布了新的文献求助10
46秒前
ldykkkkk发布了新的文献求助10
47秒前
48秒前
Bioyanggu发布了新的文献求助10
48秒前
神勇的怜菡完成签到,获得积分10
49秒前
zhhhh完成签到,获得积分10
50秒前
八二力完成签到 ,获得积分10
56秒前
59秒前
59秒前
mangle完成签到,获得积分10
1分钟前
timemaster666完成签到,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281827
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457