Using Range-Doppler Spectrum-Based Deep Learning Method to Detect Radar Target in Interrupted Sampling Repeater Jamming

中继器(钟表) 计算机科学 假警报 干扰 测距 雷达 采样(信号处理) 人工智能 恒虚警率 深度学习 信噪比(成像) 目标检测 实时计算 算法 模式识别(心理学) 计算机视觉 电信 滤波器(信号处理) 物理 编码(内存) 热力学
作者
Minghua Wu,Mengliang Li,Haoran Shi,Xu Cheng,Bin Rao,Wei Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:23 (23): 29084-29096 被引量:3
标识
DOI:10.1109/jsen.2023.3286893
摘要

Main-lobe interrupted sampling repeater jamming (ISRJ) poses a serious threat to the normal use of radar. The existing anti-ISRJ target detection methods based on deep learning have problems, such as a large number of training samples required, complex use steps, inability to achieve ranging and speed measurement at the same time, and poor detection probability under a very low signal-to-noise ratio (SNR) environment. To solve these problems, this article proposes an end-to-end anti-ISRJ target detection method based on the range-Doppler spectrum. First, a visual object detection network based on convolutional neural networks (CNNs) is designed and trained with fewer than 9000 samples. Focal loss is introduced to train the network. It can adaptively improve the loss weight of hard samples and, therefore, improve the performance of the network under a low SNR environment. After that, the range-Doppler spectrum corresponding to the radar echo signal is input into the trained network, and then, the detection, ranging, and speed measurement of the targets under ISRJ conditions can be realized. The simulation results show that the detection probability of the proposed method under various SNRs, signal-to-jamming ratios (SJRs), and false alarm rates is better than that of the compared method. The proposed method can achieve a detection probability of more than 80% under the condition of a false alarm rate of $1e-4$ , an SNR of −20 dB, and an SJR of not less than −20 dB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助wyx采纳,获得10
刚刚
小呆鹿发布了新的文献求助30
刚刚
laopei2001完成签到,获得积分10
2秒前
张玺发布了新的文献求助50
3秒前
5秒前
5秒前
轻松的恋风完成签到,获得积分10
5秒前
小呆鹿完成签到,获得积分10
6秒前
6秒前
光亮的夜雪完成签到,获得积分10
7秒前
7秒前
jenningseastera应助JUGG采纳,获得10
9秒前
星辰大海应助伶俐的鞋子采纳,获得10
10秒前
胡志飞发布了新的文献求助10
11秒前
12秒前
12秒前
13秒前
14秒前
14秒前
科研通AI5应助BL采纳,获得10
14秒前
16秒前
jovrtic发布了新的文献求助30
17秒前
17秒前
清秀寇发布了新的文献求助10
18秒前
19秒前
科研通AI2S应助胡志飞采纳,获得10
21秒前
21秒前
21秒前
小小高完成签到 ,获得积分10
22秒前
23秒前
23秒前
111发布了新的文献求助10
23秒前
xiongyue发布了新的文献求助10
25秒前
BL完成签到,获得积分10
25秒前
cccccl发布了新的文献求助10
27秒前
28秒前
热心烙发布了新的文献求助40
29秒前
胡志飞完成签到,获得积分20
30秒前
吴兰田发布了新的文献求助10
32秒前
keleke发布了新的文献求助10
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787285
求助须知:如何正确求助?哪些是违规求助? 3332896
关于积分的说明 10258130
捐赠科研通 3048309
什么是DOI,文献DOI怎么找? 1673086
邀请新用户注册赠送积分活动 801616
科研通“疑难数据库(出版商)”最低求助积分说明 760303