An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:157
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers' outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. Note to Practitioners — This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time $t$ remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜刀发布了新的文献求助10
1秒前
南极磷叶石完成签到,获得积分10
9秒前
11秒前
蓝色天空发布了新的文献求助10
11秒前
yyyyyyy发布了新的文献求助10
12秒前
Mercy发布了新的文献求助20
13秒前
齐半青完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
17秒前
阿冷完成签到,获得积分10
18秒前
梦玲完成签到 ,获得积分20
18秒前
18秒前
浅色墨水完成签到,获得积分10
18秒前
腾腾同学发布了新的文献求助10
20秒前
20秒前
所所应助Mercy采纳,获得10
21秒前
疯狂的凡发布了新的文献求助10
21秒前
22秒前
SciGPT应助蓝色天空采纳,获得10
22秒前
大气的山彤完成签到,获得积分10
22秒前
微笑发布了新的文献求助10
24秒前
Shaineli完成签到,获得积分10
24秒前
xjn完成签到,获得积分10
26秒前
26秒前
Mercy完成签到,获得积分10
29秒前
Ldq发布了新的文献求助10
31秒前
pluto应助凫萤榭竹采纳,获得10
32秒前
田様应助科研通管家采纳,获得10
32秒前
深情安青应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得30
32秒前
充电宝应助科研通管家采纳,获得10
33秒前
33秒前
NexusExplorer应助科研通管家采纳,获得10
33秒前
33秒前
微笑完成签到,获得积分10
33秒前
酷波er应助疯狂的凡采纳,获得10
36秒前
wdnmdlhzkx完成签到,获得积分10
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4775996
求助须知:如何正确求助?哪些是违规求助? 4108055
关于积分的说明 12707627
捐赠科研通 3829159
什么是DOI,文献DOI怎么找? 2112484
邀请新用户注册赠送积分活动 1136325
关于科研通互助平台的介绍 1020020