已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An Improved Predefined-Time Adaptive Neural Control Approach for Nonlinear Multiagent Systems

计算机科学 多智能体系统 控制理论(社会学) 人工神经网络 非线性系统 自适应控制 控制系统 控制工程 人工智能 工程类 控制(管理) 电气工程 物理 量子力学
作者
Yingnan Pan,Weiyu Ji,Hak‐Keung Lam,Liang Cao
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 6311-6320 被引量:231
标识
DOI:10.1109/tase.2023.3324397
摘要

This paper focuses on the predefined-time adaptive neural tracking control problem for nonlinear multiagent systems (MASs). In contrast to the existing results of the predefined-time control methods, this paper introduces a lemma for achieving predefined-time stability within the framework of backstepping, and the primary distinguishing feature is the ability to predefine the convergence time according to user specifications and the controller design process being influenced by a singular parameter. Meanwhile, a numerical example is presented by using the proposed lemma such that the convergence performance can be ensured by the user practical specification. Moreover, by using the neural networks (NNs) and the finite time differentiators, an adaptive approach to predefined-time tracking control is presented for nonlinear MASs. This method ensures the predefined-time stability of all signals within the MASs, while also enabling the followers&#x2019; outputs to accurately track the desired trajectory with the predefined time. The effectiveness and merits of the proposed scheme are substantiated through simulation results. <italic>Note to Practitioners</italic>&#x2014; This paper aims to address the predefined-time control problem for MASs, which can be widely used in practice, such as vehicular platoon systems control, teleoperation systems control, etc. The existing predefined-time methods only guarantee system convergence within the predefined-time interval, and achieving predefined-time convergence with an exact convergence time <inline-formula> <tex-math notation="LaTeX">$t$</tex-math> </inline-formula> remains a challenge. Moreover, the existing predefined-time methods contain many control parameters, which complicates the process of the parameter tuning. To address the aforementioned challenges, a predefined-time adaptive neural control method for MASs is developed, which can guarantee that all signals within MASs are predefined-time stable while enabling the followers to accurately track the desired trajectory with predefined time. Moreover, only one parameter and a pair of the finite time differentiators designed constants are involved in the controller design process, which simplifies the process of the parameter tuning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111发布了新的文献求助20
刚刚
赤岩完成签到 ,获得积分10
1秒前
2秒前
大方明杰发布了新的文献求助10
2秒前
哈哈哈哈哈完成签到,获得积分10
4秒前
ding应助阿玉采纳,获得10
4秒前
香蕉觅云应助疯狂的曼香采纳,获得10
5秒前
Akim应助秋qiu采纳,获得10
6秒前
7秒前
7秒前
Cindy发布了新的文献求助10
11秒前
11秒前
cy发布了新的文献求助10
12秒前
butterflycat完成签到,获得积分10
14秒前
爱把文献看完成签到 ,获得积分20
15秒前
17秒前
17秒前
18秒前
Miracle_wh完成签到 ,获得积分10
18秒前
19秒前
科研通AI6.1应助cy采纳,获得10
19秒前
李忆梦完成签到 ,获得积分10
19秒前
科研通AI6.1应助cy采纳,获得10
19秒前
freshman发布了新的文献求助10
20秒前
Alvin完成签到,获得积分10
22秒前
22秒前
张璟博发布了新的文献求助10
23秒前
情怀应助freshman采纳,获得10
26秒前
张璟博完成签到,获得积分10
29秒前
Lida发布了新的文献求助10
29秒前
Aimee发布了新的文献求助10
32秒前
32秒前
32秒前
33秒前
甜蜜鹭洋完成签到 ,获得积分10
37秒前
阿玉发布了新的文献求助10
37秒前
37秒前
zzzdx发布了新的文献求助10
38秒前
小十一完成签到 ,获得积分10
39秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779215
求助须知:如何正确求助?哪些是违规求助? 5646297
关于积分的说明 15451448
捐赠科研通 4910636
什么是DOI,文献DOI怎么找? 2642783
邀请新用户注册赠送积分活动 1590462
关于科研通互助平台的介绍 1544831