亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep operator learning-based surrogate models with uncertainty quantification for optimizing internal cooling channel rib profiles

水力直径 替代模型 频道(广播) 计算机科学 胸腔 操作员(生物学) 不确定度量化 算法 数学优化 机械 数学 物理 结构工程 机器学习 计算机网络 生物化学 化学 抑制因子 雷诺数 转录因子 湍流 基因 工程类
作者
Izzet Sahin,Christian Moya,Amirhossein Mollaali,Guang Lin,Guillermo Paniagua
出处
期刊:International Journal of Heat and Mass Transfer [Elsevier BV]
卷期号:219: 124813-124813
标识
DOI:10.1016/j.ijheatmasstransfer.2023.124813
摘要

This paper focuses on designing surrogate models that have uncertainty quantification capabilities to effectively improve the thermal performance of rib-turbulated internal cooling channels. To construct the surrogate, we use the deep operator network (DeepONet) framework, a novel class of neural networks designed to approximate mappings between infinite-dimensional spaces using relatively small datasets. The proposed DeepONet takes an arbitrary rib geometry as input and outputs continuous detailed pressure and heat transfer distributions around the profiled ribs. The datasets needed to train and test the proposed DeepONet framework were obtained by simulating a 2D rib-roughened internal cooling channel. To accomplish this, we continuously modified the input rib geometry by adjusting the control points according to a simple random distribution with constraints, rather than following a predefined path or sampling method. The studied channel has a hydraulic diameter, Dh, of 66.7 mm, and a length-to-hydraulic diameter ratio, L/Dh, of 10. The ratio of rib center height to hydraulic diameter (e/Dh), which was not changed during the rib profile update, was maintained at a constant value of 0.048. The ribs were placed in the channel with a pitch-to-height ratio (P/e) of 10. In addition, we provide the proposed surrogates with effective uncertainty quantification capabilities. This is achieved by converting the DeepONet framework into a Bayesian DeepONet (B-DeepONet). B-DeepONet samples from the posterior distribution of DeepONet parameters using the novel framework of stochastic gradient replica-exchange MCMC. Finally, we demonstrate the performance of the proposed DeepONet-based surrogate models with uncertainty quantification by incorporating them into a constrained, gradient-free optimization problem that enhances the thermal performance of the rib-turbulated internal cooling channel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北顾发布了新的文献求助10
5秒前
苏卿应助oleskarabach采纳,获得10
5秒前
苏卿应助oleskarabach采纳,获得10
5秒前
9秒前
9秒前
10秒前
ch发布了新的文献求助10
15秒前
51秒前
英姑应助科研通管家采纳,获得10
1分钟前
1分钟前
飞星发布了新的文献求助10
1分钟前
可爱的函函应助Kevin采纳,获得30
1分钟前
飞星完成签到,获得积分10
2分钟前
Leofar完成签到 ,获得积分10
2分钟前
顾矜应助qinzhu采纳,获得10
2分钟前
科研通AI5应助ch采纳,获得10
2分钟前
科研通AI5应助ch采纳,获得10
2分钟前
mbxjsy完成签到 ,获得积分10
2分钟前
jokerhoney完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Cheng发布了新的文献求助10
2分钟前
2分钟前
滴滴滴完成签到 ,获得积分10
3分钟前
3分钟前
ET完成签到,获得积分10
3分钟前
青山完成签到 ,获得积分10
3分钟前
TT发布了新的文献求助10
3分钟前
Ava应助暴躁的咖啡采纳,获得10
3分钟前
赘婿应助谦让的西装采纳,获得10
3分钟前
科研通AI5应助TT采纳,获得10
3分钟前
3分钟前
3分钟前
暴躁的咖啡完成签到,获得积分20
3分钟前
lynne完成签到,获得积分10
3分钟前
欣欣每天开开心心完成签到 ,获得积分10
4分钟前
4分钟前
希望天下0贩的0应助lynne采纳,获得10
4分钟前
二丙完成签到 ,获得积分10
4分钟前
李洁完成签到 ,获得积分10
4分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833728
求助须知:如何正确求助?哪些是违规求助? 3376164
关于积分的说明 10492285
捐赠科研通 3095739
什么是DOI,文献DOI怎么找? 1704694
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792