Mining Top-k High Average-Utility Sequential Patterns for Resource Transformation

计算机科学 转化(遗传学) 数据挖掘 序列(生物学) 资源(消歧) 前缀 效用理论 数学 基因 生物 哲学 生物化学 数理经济学 化学 遗传学 语言学 计算机网络
作者
Kai Cao,Yucong Duan
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (22): 12340-12340 被引量:1
标识
DOI:10.3390/app132212340
摘要

High-utility sequential pattern mining (HUSPM) helps researchers find all subsequences that have high utility in a quantitative sequential database. The HUSPM approach appears to be well suited for resource transformation in DIKWP graphs. However, all the extensions of a high-utility sequential pattern (HUSP) also have a high utility that increases with its length. Therefore, it is difficult to obtain diverse patterns of resources. The patterns that consist of many low-utility items can also be a HUSP. In practice, such a long pattern is difficult to analyze. In addition, the low-utility items do not always reflect the interestingness of association rules. High average-utility pattern mining is considered a solution to extract more significant patterns by considering the lengths of patterns. In this paper, we formulate the problem of top-k high average-utility sequential pattern mining (HAUSPM) and propose a novel algorithm for resource transformation. We adopt a projection mechanism to improve efficiency. We also adopt the sequence average-utility-raising strategy to increase thresholds. We design the prefix extension average utility and the reduced sequence average utility by incorporating the average utility into the utility upper bounds. The results of our comparative experiments demonstrate that the proposed algorithm can achieve sufficiently good performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
背后如彤发布了新的文献求助20
1秒前
开开完成签到,获得积分10
1秒前
1秒前
Xiaque完成签到 ,获得积分10
1秒前
晨曦完成签到,获得积分10
2秒前
缥缈月光完成签到,获得积分10
4秒前
5秒前
如意发布了新的文献求助30
6秒前
6秒前
6秒前
科研通AI5应助bjhhhhhj采纳,获得10
6秒前
明亮灭绝发布了新的文献求助10
6秒前
7秒前
7秒前
科研通AI5应助FlipFlops采纳,获得30
7秒前
asnly发布了新的文献求助10
7秒前
qsr完成签到,获得积分10
7秒前
科研通AI2S应助ManLi采纳,获得10
8秒前
雅光完成签到,获得积分10
8秒前
illusion2019应助欢喜天奇采纳,获得10
8秒前
快乐小霉完成签到,获得积分10
8秒前
8秒前
朱光辉发布了新的文献求助10
9秒前
上官若男应助江苏小马云采纳,获得10
9秒前
cc发布了新的文献求助10
11秒前
yshog发布了新的文献求助10
11秒前
12秒前
tao完成签到 ,获得积分10
12秒前
13秒前
13秒前
执着完成签到,获得积分10
13秒前
科研通AI5应助Bressanone采纳,获得10
14秒前
15秒前
幽默的龙猫完成签到,获得积分20
15秒前
Lucas应助学术机器1采纳,获得10
16秒前
安雯完成签到 ,获得积分10
16秒前
17秒前
我脸1点都不圆完成签到,获得积分20
17秒前
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787674
求助须知:如何正确求助?哪些是违规求助? 3333313
关于积分的说明 10261091
捐赠科研通 3048951
什么是DOI,文献DOI怎么找? 1673366
邀请新用户注册赠送积分活动 801847
科研通“疑难数据库(出版商)”最低求助积分说明 760369