已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Detecting depression based on facial cues elicited by emotional stimuli in video

面部表情 刺激(心理学) 面部动作编码系统 心理学 听力学 召回 认知心理学 人工智能 沟通 医学 计算机科学
作者
Bin Hu,Yongfeng Tao,Minqiang Yang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:165: 107457-107457 被引量:13
标识
DOI:10.1016/j.compbiomed.2023.107457
摘要

Recently, depression research has received considerable attention and there is an urgent need for objective and validated methods to detect depression. Depression detection based on facial expressions may be a promising adjunct to depression detection due to its non-contact nature. Stimulated facial expressions may contain more information that is useful in detecting depression than natural facial expressions. To explore facial cues in healthy controls and depressed patients in response to different emotional stimuli, facial expressions of 62 subjects were collected while watching video stimuli, and a local face reorganization method for depression detection is proposed. The method extracts the local phase pattern features, facial action unit (AU) features and head motion features of a local face reconstructed according to facial proportions, and then fed into the classifier for classification. The classification accuracy was 76.25%, with a recall of 80.44% and a specificity of 83.21%. The results demonstrated that the negative video stimuli in the single-attribute stimulus analysis were more effective in eliciting changes in facial expressions in both healthy controls and depressed patients. Fusion of facial features under both neutral and negative stimuli was found to be useful in discriminating between healthy controls and depressed individuals. The Pearson correlation coefficient (PCC) showed that changes in the emotional stimulus paradigm were more strongly correlated with changes in subjects' facial AU when exposed to negative stimuli compared to stimuli of other attributes. These results demonstrate the feasibility of our proposed method and provide a framework for future work in assisting diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王博林发布了新的文献求助10
刚刚
1秒前
3秒前
3秒前
慕青应助lkq采纳,获得10
3秒前
Orange应助风清扬采纳,获得10
3秒前
5秒前
ccm应助雯yuki采纳,获得10
6秒前
王聪发布了新的文献求助10
7秒前
霖lin发布了新的文献求助10
7秒前
白华苍松发布了新的文献求助10
8秒前
清茶发布了新的文献求助10
8秒前
13秒前
遇晴完成签到,获得积分10
14秒前
liao应助王博林采纳,获得30
15秒前
yinch发布了新的文献求助20
16秒前
16秒前
17秒前
清茶完成签到,获得积分10
17秒前
遇晴发布了新的文献求助10
18秒前
华仔应助刻苦的紫翠采纳,获得10
19秒前
香蕉觅云应助金宝采纳,获得10
20秒前
HANZHANG完成签到,获得积分10
21秒前
iCorner完成签到,获得积分10
22秒前
杨念一完成签到,获得积分10
23秒前
李爱国应助拾意采纳,获得10
26秒前
子车茗应助iCorner采纳,获得30
30秒前
郭丹丹完成签到 ,获得积分10
30秒前
花满楼应助霖lin采纳,获得10
32秒前
CodeCraft应助WDD采纳,获得10
32秒前
33秒前
刻苦的紫翠完成签到,获得积分20
33秒前
33秒前
34秒前
Orange应助ll采纳,获得10
35秒前
36秒前
YY发布了新的文献求助10
36秒前
执行正义完成签到 ,获得积分10
37秒前
DDvicky发布了新的文献求助10
38秒前
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5475942
求助须知:如何正确求助?哪些是违规求助? 4577610
关于积分的说明 14362245
捐赠科研通 4505491
什么是DOI,文献DOI怎么找? 2468706
邀请新用户注册赠送积分活动 1456339
关于科研通互助平台的介绍 1429950