Towards Automated Inspections of Tunnels: A Review of Optical Inspections and Autonomous Assessment of Concrete Tunnel Linings

停工期 计算机科学 卷积神经网络 无人机 人工智能 遗传学 生物 操作系统
作者
Andreas Sjölander,Valeria Belloni,Anders Ansell,Erik Nordström
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:23 (6): 3189-3189 被引量:27
标识
DOI:10.3390/s23063189
摘要

In recent decades, many cities have become densely populated due to increased urbanization, and the transportation infrastructure system has been heavily used. The downtime of important parts of the infrastructure, such as tunnels and bridges, seriously affects the transportation system’s efficiency. For this reason, a safe and reliable infrastructure network is necessary for the economic growth and functionality of cities. At the same time, the infrastructure is ageing in many countries, and continuous inspection and maintenance are necessary. Nowadays, detailed inspections of large infrastructure are almost exclusively performed by inspectors on site, which is both time-consuming and subject to human errors. However, the recent technological advancements in computer vision, artificial intelligence (AI), and robotics have opened up the possibilities of automated inspections. Today, semiautomatic systems such as drones and other mobile mapping systems are available to collect data and reconstruct 3D digital models of infrastructure. This significantly decreases the downtime of the infrastructure, but both damage detection and assessments of the structural condition are still manually performed, with a high impact on the efficiency and accuracy of the procedure. Ongoing research has shown that deep-learning methods, especially convolutional neural networks (CNNs) combined with other image processing techniques, can automatically detect cracks on concrete surfaces and measure their metrics (e.g., length and width). However, these techniques are still under investigation. Additionally, to use these data for automatically assessing the structure, a clear link between the metrics of the cracks and the structural condition must be established. This paper presents a review of the damage of tunnel concrete lining that is detectable with optical instruments. Thereafter, state-of-the-art autonomous tunnel inspection methods are presented with a focus on innovative mobile mapping systems for optimizing data collection. Finally, the paper presents an in-depth review of how the risk associated with cracks is assessed today in concrete tunnel lining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴苏菲发布了新的文献求助10
1秒前
1秒前
知行者发布了新的文献求助10
2秒前
斯文明杰发布了新的文献求助10
4秒前
7秒前
容我想想完成签到,获得积分10
8秒前
hzy完成签到,获得积分20
9秒前
佰斯特威应助yy采纳,获得10
10秒前
10秒前
糟糕的道罡完成签到,获得积分10
11秒前
打打应助格子浅唱初夏采纳,获得10
14秒前
15秒前
张天宝真的爱科研完成签到,获得积分10
15秒前
无花果应助xx采纳,获得10
16秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
tian完成签到,获得积分10
16秒前
脑洞疼应助武雨寒采纳,获得10
16秒前
shuqi完成签到 ,获得积分10
17秒前
lgh完成签到 ,获得积分10
18秒前
18秒前
18秒前
zls发布了新的文献求助30
19秒前
迷迷糊糊完成签到,获得积分10
19秒前
sss完成签到 ,获得积分10
20秒前
想退休完成签到 ,获得积分10
20秒前
21秒前
科研通AI5应助Yan采纳,获得30
22秒前
23秒前
barryfei发布了新的文献求助10
23秒前
lxd完成签到,获得积分10
23秒前
英吉利25发布了新的文献求助30
24秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
26秒前
yy完成签到 ,获得积分10
27秒前
科研通AI5应助灵灵采纳,获得10
27秒前
28秒前
科研通AI6应助cinyadane采纳,获得150
28秒前
脑洞疼应助糟糕的道罡采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4638090
求助须知:如何正确求助?哪些是违规求助? 4031727
关于积分的说明 12473842
捐赠科研通 3718728
什么是DOI,文献DOI怎么找? 2052230
邀请新用户注册赠送积分活动 1083556
科研通“疑难数据库(出版商)”最低求助积分说明 965445