Artificial intelligence‐based reticulin proportionate area – a novel histological outcome predictor in hepatocellular carcinoma

肝细胞癌 医学 危险系数 比例危险模型 内科学 病态的 病理 转移 肿瘤科 胃肠病学 置信区间 癌症
作者
Ameya Patil,Rebecca Salvatori,Lindsey Smith,Sarah M. Jenkins,Andrew Cannon,Christopher Hartley,Rondell P. Graham,Roger K. Moreira
出处
期刊:Histopathology [Wiley]
卷期号:83 (4): 512-525 被引量:4
标识
DOI:10.1111/his.15001
摘要

Aims Reticulin stain is used routinely in the histological evaluation of hepatocellular carcinoma (HCC). The goal of this study was to assess whether the histological reticulin proportionate area (RPA) in HCCs predicts tumour‐related outcomes. Methods and results We developed and validated a supervised artificial intelligence (AI) model that utilises a cloud‐based, deep‐learning AI platform (Aiforia Technologies, Helsinki, Finland) to specifically recognise and quantify the reticulin framework in normal livers and HCCs using routine reticulin staining. We applied this reticulin AI model to a cohort of consecutive HCC cases from patients undergoing curative resection between 2005 and 2015. A total of 101 HCC resections were included (median age = 68 years, 64 males, median follow‐up time = 49.9 months). AI model RPA reduction of > 50% (compared to normal liver tissue) was predictive of metastasis [hazard ratio (HR) = 3.76, P = 0.004, disease‐free survival (DFS, HR = 2.48, P < 0.001) and overall survival (OS), HR = 2.80, P = 0.001]. In a Cox regression model, which included clinical and pathological variables, RPA decrease was an independent predictor of DFS and OS and the only independent predictor of metastasis. Similar results were found in the moderately differentiated HCC subgroup (WHO grade 2), in which reticulin quantitative analysis was an independent predictor of metastasis, DFS and OS. Conclusion Our data indicate that decreased RPA is a strong predictor of various HCC‐related outcomes, including within the moderately differentiated subgroup. Reticulin, therefore, may represent a novel and important prognostic HCC marker, to be further explored and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到,获得积分10
1秒前
ZS0901发布了新的文献求助10
1秒前
方明会完成签到,获得积分20
2秒前
单薄新烟完成签到,获得积分10
2秒前
3秒前
3秒前
科研牛马完成签到,获得积分10
4秒前
烟花应助坦率夕阳采纳,获得10
5秒前
6秒前
6秒前
ding应助Maple采纳,获得10
7秒前
ZS0901完成签到,获得积分10
7秒前
8秒前
9秒前
u2u2发布了新的文献求助10
9秒前
小齐完成签到 ,获得积分10
9秒前
怡然臻完成签到,获得积分10
11秒前
11秒前
风趣雪一发布了新的文献求助10
11秒前
13秒前
insectsawaken发布了新的文献求助10
14秒前
无心的紫山完成签到,获得积分10
15秒前
16秒前
危机的酒窝完成签到,获得积分10
17秒前
热心市民应助张伟静采纳,获得10
18秒前
puheshengwu发布了新的文献求助10
19秒前
19秒前
20秒前
美好发布了新的文献求助10
20秒前
深情安青应助天天小女孩采纳,获得10
20秒前
21秒前
王梽旭完成签到,获得积分20
22秒前
22秒前
ableyy完成签到,获得积分10
23秒前
23秒前
Maple完成签到,获得积分10
24秒前
王梽旭发布了新的文献求助10
24秒前
立里发布了新的文献求助10
25秒前
小王发布了新的文献求助10
25秒前
小二郎应助风趣雪一采纳,获得10
26秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831805
求助须知:如何正确求助?哪些是违规求助? 3373943
关于积分的说明 10482648
捐赠科研通 3093880
什么是DOI,文献DOI怎么找? 1703103
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771411