医学
心脏病学
肺动脉高压
内科学
肺栓塞
肺动脉
反流(循环)
背景(考古学)
古生物学
生物
作者
Stephen Alerhand,Robert James Adrian
标识
DOI:10.1016/j.ajem.2023.07.011
摘要
Pulmonary embolism (PE) and pulmonary hypertension (PH) are potentially fatal disease states. Early diagnosis and goal-directed management improve outcomes and survival. Both conditions share several echocardiographic findings of right ventricular dysfunction. This can inadvertently lead to incorrect diagnosis, inappropriate and potentially harmful management, and delay in time-sensitive therapies. Fortunately, bedside echocardiography imparts a few critical distinctions. This narrative review describes eight physiologically interdependent echocardiographic parameters that help distinguish acute PE and chronic PH. The manuscript details each finding along with associated pathophysiology and summarization of the literature evaluating diagnostic utility. This guide then provides pearls and pitfalls with high-quality media for the bedside evaluation. The echocardiographic parameters suggesting acute or chronic right ventricular dysfunction (best used in combination) are: 1. Right heart thrombus (acute PE) 2. Right ventricular free wall thickness (acute ≤ 5 mm, chronic > 5 mm) 3. Tricuspid regurgitation pressure gradient (acute ≤ 46 mmHg, chronic > 46 mmHg, corresponding to tricuspid regurgitation maximal velocity ≤ 3.4 m/sec and > 3.4 m/sec, respectively) 4. Pulmonary artery acceleration time (acute ≤ 60-80 msec, chronic < 105 msec) 5. 60/60 sign (acute) 6. Pulmonary artery early-systolic notching (proximally-located, higher-risk PE) 7. McConnell’s sign (acute) 8. Right atrial enlargement (equal to left atrial size suggests acute, greater than left atrial size suggests chronic). Emergency physicians must appreciate the echocardiographic findings and associated pathophysiology that help distinguish acute and chronic right ventricular dysfunction. In the proper clinical context, these findings can point towards PE or PH, thereby leading to earlier goal-directed management.
科研通智能强力驱动
Strongly Powered by AbleSci AI